

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ФП.08.001РЭ

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.focusprobe.nt-rt.ru || эл. почта: fcs@nt-rt.ru

По вопросам продаж и поддержки обращайтесь:

Предостережения

Инструкции и процедуры, содержащиеся в данном руководстве, предназначены только для квалифицированного персонала, их несоблюдение может повлечь смерть или серьезные травмы.

Нельзя проводить установку, сервисное обслуживание или иные процедуры, не описанные в данном руководстве.

Оптические поверхности легко загрязнить или повредить. Проявляйте осторожность при работе с оптоволоконным кабелем.

На правильную и безопасную работу расходомера влияет правильная установка крепежных элементов. Не соблюдение приведенных инструкций может привести к у течке потенциально опасных газов и /или жидкостей. «ИННОТЕХ» не несет ответственности за любые повреждения или травмы, возникшие из-за неправильной установки расходомера, или его установки неквалифицированным персоналом.

Информация по безопасности

Условные обозначения, принятые в данном руководстве

Опасно – ВЫСОКОЕ НАПРЯЖЕНИЕ, следуйте приведенным инструкциям во избежание травмирования персонала

Опасность/Предостережение – прочитайте приведенную информацию для предотвращения причинения вреда персоналу и/или повреждению оборудования

Подсказки или дополнительная информация, необходимая для выполнения задачи наиболее безопасным способом

Содержание:

Вве	дени	ıe	7
1.	Наз	начение	. 8
2.	Обл	асть применения	8
3.	Ука	зание по безопасности	. 9
3.	.1.	Обеспечение взрывозащищённости	9
3.	.2.	Требования лазерной безопасности	10
3.	.3.	Возврат изделия	10
4.	Ma	окировка	10
5.	Tex	нические параметры	11
5.	.1.	Состав	11
	5.1.	1. Устройство зонда оптического расходомера	12
	5.1.	2. Варианты исполнения процессора оптического расходомера	12
	5.1.	3. Комплектация Focus [®] Probe	13
5.	.2.	Основные технические параметры	13
6.	Опи	исание устройства и принципа работы	14
7.	Выб	бор места измерения	16
8.	Осн	ЮВНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ	18
8.	.1.	Первичный осмотр.	18
8.	2	Меры безопасности при работе с дазером	18
8	. <u>ב</u> . २	Использование расходомера во взрывоопасной атмосфере	19
9.0.	.у. Ппа	лепользование расходомера во ворывоонасной анносферентики посторание процессора Focus Probe	20
ر. ۹	1 1	Программирование Процессора ОР при помощи программы OEM Monitor	20
ر م	. <u>.</u> . 2	Программирование Процессора ОГ при помощи программы UniverTerminal	22 10
9.	.2. ว	Программирование процессора ОР при помощи программы пуреттентина	40
9.	.3.	Сохранение / загрузка настроек регистра в память	42
9.	.4.	Загрузка параметров системной настройки	4Z
9.	.5.	Перечень встроенных команд ПОР	43
10.	У	становка расходомера Focus Probe	44
1(0.1.	Установка зонда расходомера Focus Probe	44
1(0.2.	Установка процессора оптического расходомера	53
1(0.3.	Установка блока питания нагревателя оптики	54
1(0.4.	Присоединение кабелей	55
1(0.5.	Электрические соединения процессора	56
1(0.6.	Присоединение оптических кабелей	60
1(0.7.	Присоединение кабеля нагревателя (опция)	62
11.	Bi	ыемка зонда Focus Probe	63
11	1.1.	Последовательность рассоединения оптоволоконного интерфейсного кабеля	1.63
11	1.2.	Последовательность отсоединения интерфейсного кабеля нагревателя	64
11	1.3.	Извлечение зонда	64
12.	Эі	ксплуатация расходомера	65
13.	Te	ехническое обслуживание	65
13	3.1.	Общие указания	65
13	3.2.	Порядок технического обслуживания	65
13	3.3.	Чистка зонда Focus [™] Probe	66
13	3.4.	Проверка работоспособности	68
	13.4	4.1. Проверка юстировки и работы оптической системы	68
13	3.5.	Техническое освидетельствование	72

14. Текущий ремонт	72
14.1. Общие указания	72
14.2. Возможные неисправности	72
15. Хранение и транспортирование	77
16. Сертификаты и разрешения	77
16.1. Метрология	77
16.2. Взрывозащита	78

Введение

В данном руководстве по эксплуатации приведены технические данные, описание устройства и принципа действия, а также сведения, необходимые для монтажа, правильной и безопасной эксплуатации оптического расходомера газа FOCUS[®] PROBE (далее – расходомер).

Прочтите его, пожалуйста, внимательно и следите за тем, чтобы строго выполнялись изложенные инструкции. Следование инструкциям поможет Вам многие годы без проблем использовать приобретённый прибор.

Обо всех недостатках в работе и конструкции расходомера, замечаниях и предложениях просим сообщать по адресу:

Желаем Вам успехов в работе.

1. Назначение

Оптический расходомер газа Focus[®] Probe предназначен для измерения расхода газа в трубопроводах.

Расходомер может измерять следующие величины:

- скорость потока,

- объёмный мгновенный и накопленный расход,

- объёмный мгновенный и накопленный расход, приведенный к нормальным условиям.

2. Область применения

2.1 Расходомер относится к взрывозащищенному электрооборудованию группы II по ГОСТ Р 51330.0-99. Область применения — взрывоопасные зоны помещений и наружных установок согласно ГОСТ Р 51330.13-99 (МЭК 60079-14-96), гл. 7.3 Правил устройства электроустановок (ПУЭ) и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных зонах.

2.2 Основное направление применения расходомера - измерение расхода попутного нефтяного и факельного газов. Расходомер также может измерять расход практически любых газов, за исключением газов, специально и глубоко очищенных от примесей, и перегретого пара.

2.3 Основные преимущества:

- простота установки фланцевое соединение;
- нет движущихся частей;
- неразрушающий контроль;
- высокий динамический диапазон (1000:1);
- работа при давлении газа от 0,1 до 0,7 МПа без потерь давления;
- повторяющиеся измерения на протяжении всей жизни прибора;
- высокая точность измерения, на которую не влияет состав газа;
- не реагирует на вибрации трубы или акустический шум;
- искробезопасное оптическое измерение.

3. Указание по безопасности

3.1. Обеспечение взрывозащищённости

- 3.1.1. Все электронные компоненты находятся во взрывобезопасной оболочке.
- 3.1.2. Контроллер и источник питания нагревателя имеют сертифицированные взрывонепроницаемые оболочки фирмы «Adalet». Взрывоустойчивость и взрывонепроницаемость оболочек соответствуют требованиям к электрооборудованию подгруппы IIВ по ГОСТ Р 51330.1-99. Параметры взрывонепроницаемых соединений, конструкция кабельных вводов, температурные характеристики используемых материалов соответствуют требованиям ГОСТ Р 51330.0-99, ГОСТ Р 51330.1-99.
- 3.1.3. Искробезопасность цепи питания нагревателя оптической головки обеспечена применением в источнике питания барьера безопасности типа 9001/01-144-2970-10 фирмы STAHL и ограничительного резистора.
- 3.1.4. Электрические зазоры, пути утечки и электрическая прочность изоляции искробезопасной цепи соответствует требованиям ГОСТ Р 51330.10-99.
- 3.1.5. Электрическая нагрузка элементов, обеспечивающих искробезопасность, не превышает 2/3 их номинальных значений.
- 3.1.6. Максимальные значения суммарных электрической ёмкости и индуктивности линии связи источника питания нагревателя и оптической головки расходомера установлены с учётом требований искробезопасности для электрических цепей подгруппы IIB по ГОСТ Р 51330.10-99.
- 3.1.7. Максимальная температура поверхности устройств в составе расходомера не превышает значений, допустимых для температурного класса ТЗ (нагреватель) и Т6 (контроллер и источник питания нагревателя) по ГОСТ Р 51330.0-99.
- 3.1.8. Конструкция корпуса и отдельных частей оболочек электротехнических устройств в составе оптического расходомера выполнена с учётом общих требований ГОСТ Р 51330.0-99 для электрооборудования, размещённого во взрывоопасных зонах. Уплотнения и соединения элементов конструкции обеспечивают степень защиты IP66. Механическая прочность оболочек соответствует требованиям ГОСТ Р 51330.0-99 для электрооборудования II группы с высокой опасностью механических повреждений. Фрикционная искробезопасность обеспечена характеристиками выбранных конструкционных материалов.
- 3.1.9. Электротехнические устройства в составе расходомера имеют предупредительные надписи, таблички с указанием маркировки взрывозащиты и знака «Х» (Таблица 3-1).

Таолица 5-т			
	Маркировка		
Паименование устроиства в составе расходомера	взрывозащиты		
Контроллер OFP-XP-C1Z1	1ExdIIBT6		
Источник питания нагревателя OFA-HTR-PS-INS-XP	1Exd[ia]IIBT6 X		
Оптическая головка с нагревателем	ExialICT3		

To5 man 2 1

3.2. Требования лазерной безопасности

Все модели ОР удовлетворяют требованиям лазерной безопасности:

- США: ANSI Z136.1, CDRH (FDA) 21 CRF 1040.10 и .11;
- Канада CAN/CSA-E60825-1:03;
- Европа EN60825-1:1994.

Классификация лазера во время работы: (Оптические пути закрыты, нет доступа к лазеру).

3.3. Возврат изделия

3.3.1. Прежде чем передавать на поверку, калибровку или ремонт расходомер в ООО «ИННОТЕХ», необходимо выполнить следующие процедуры:

• удалить все остатки нефти, парафина, солей, асфальтенов и других механических частиц с наружных, внутренних и оптических поверхностей расходомера. Это особенно важно, если вещества опасны для здоровья, например, воспламеняющиеся, токсичные, щелочные, канцерогенные и т.д.

ВНИМАНИЕ! Расходы на утилизацию отходов и лечение травм вследствие ненадлежащей очистки несет собственник расходомера.

приложить к расходомеру Паспорт с внесением записей в таблицу
 4 о движении расходомера при эксплуатации.

4. Маркировка

4.1. Модели и серийные номера указаны на пластинах/наклейках на каждом блоке, входящем в состав расходомера.

5. Технические параметры

5.1. Состав

Система оптического расходомера Focus[®] Probe состоит из измерительной части – зонда, соединенного оптоволоконным кабелем с процессором (контроллером) (Рисунок 5-1). Как опция, для избегания выпадения конденсата на оптике при измерении расхода влажного газа может быть включен блок питания пленочного нагревателя оптики зонда с электрическим кабелем.

Рисунок 5-1: Конфигурация оптического расходомера.

Рисунок 5-2. Внешний вид оптического расходомера в сборе с крепежной арматурой и оптоволоконным кабелем.

5.1.1.Устройство зонда оптического расходомера

Рисунок 5-3

5.1.2. Варианты исполнения процессора оптического расходомера

Процессор Focus[®] Probe может изготавливаться в различных корпусах:

- Во взрывозащищенном исполнении (взрывонепроницаемая оболочка) без индикатора;
- Во взрывозащищенном исполнении (взрывонепроницаемая оболочка) с индикатором;
- В корпусе на DIN-рейке;
- Во всепогодном корпусе NEMA-4X

Дисплей/ Сумматор

5.1.3. Комплектация Focus® Probe

Проверьте наличие следующих компонентов после вскрытия упаковки. При обнаружении отсутствия какого-либо компонента обратитесь к разделу «Номера компонентов» в конце руководства и свяжитесь с Вашим продавцом.

- зонд длиной 525 мм или удлиненный вариант 678 мм с установочной арматурой •
- процессор с оптоволоконным кабелем
- блок питания пленочного нагревателя с соединительным кабелем (Опция)
- Установочный диск с программой OFM Monitor
- Блок интерфейса USB и последовательного интерфейса (Опция)
- Последовательный интерфейсный кабель (DB9 к 4-выводному 3,5 мм штекеру)
- Кабель USB (Опция) •
- Крепежные кронштейны (на 50 мм трубу) •
- Два U-образных болта (на трубу 50 мм)
- Комплект для очистки оптических деталей

5.2. Основные технические параметры

5.2.1. Основные параметры расходомера приведены в Таблица 5-1.

Таблица 5-1 Параметр Значение от минус 20 до плюс 50 Температура окружающей при включении среды, ⁰С от минус 40 до плюс 50 во время измерения Диапазон измерения скоростей, м/с от 0,1 до 100 Время одного измерения, с 1 Предел основной относительной погрешности измерения расхода газа в рабочих условиях, % ± 2,5 Условный проход трубопровода, предназначенного от 100 до 600 (до 860) для установки расходомера, DN, мм

Максимальное давлен	0,7		
Температура рабочей	от минус 40 до плюс 100 (кратковременно до плюс 150)		
		род тока	постоянный
Питание электрически	х цепей	напряжение, В	от 10 до 30
		ток, мА	150 при 24 В; 300 при 12 В
Аналоговые входы	сигналы о и темпера	т датчиков давления туры, мА	4-20
Аналоговые выходы частотный/импульсный токовая петля, мА		4-20	
	протокол пользователя		RS-232
цифровые выходы	Modbus		RS-485
Диагностика системы	тревога при низком уровне сигнала		
Размеры вставного зон не более, мм	19,1 x 525 (678)		
Диаметр оптоволоконного удлинительного кабеля, мм			10
Масса, кг, не более	Масса, кг, не более		

5.2.2. Расходомер имеет взрывозащиту – «взрывонепроницаемая оболочка» по ГОСТ Р 51330.1-99.5.2.4

- 5.2.3. Степень защиты от попадания пыли и воды IP66 по ГОСТ 14254-96.
- 5.2.4. Средняя наработка на отказ 10000 ч.
- 5.2.5. Средний срок службы 10 лет.

6. Описание устройства и принципа работы

- 6.1.1. Расходомер измеряет с высокой точностью расход газа практически при любом давлении и любой скорости. При этом в приборе нет каких-либо движущихся частей и не происходит вмешательств, которые могли бы нарушить поток газа.
- 6.1.2. Измерение расхода газа происходит при помощи двух лазерных лучей. Первоначально определяется скорость потока в зоне окошка для прохождения потока, просвечивающееся двумя лазерными лучами (Рисунок 6-1).

Р1, Р2 – фотодетекторы; s – расстояние между лучами; t –время.

Рисунок 6-1 Принцип измерения оптического расходомера газа

Зная точное расстояние между двумя лучами лазера и замеряя время прохождения частиц между ними, расходомер вычисляет скорость прохождения частиц в окошке (Рисунок 6-2).

Р1, Р2 – фотодетекторы; s – расстояние между лучами; t –время.

Рисунок 6-2 Принцип измерения скорости потока газа расходомером

При помощи корреляционного математического аппарата, программа расходомера отфильтровывает ненужные шумовые сигналы и определяет мгновенную скорость потока газа в окошке. Затем, при помощи таблиц зависимости отношения скорости потока в точке измерения к средней скорости потока от числа Рейнолдса с учетом вязкости, температуры, давления и относительной плотности среды, определяется средняя скорость потока V_{bulk}.

Определение средней скорости потока происходит с учетом профиля потока (турбулентного или ламинарного), который определяется, исходя из полученного числа Рейнолдса измеряемой среды. Зная среднюю скорость потока в точке измерения и внутренний диаметр трубы, расходомер вычисляет мгновенный объёмный расход. В расходомере также предусмотрена функция определения мгновенного объёмного расхода, приведенного к нормальным условиям (T = 20 °C, P = 0,101 МПа).

7. Выбор места измерения

Правильный выбор точки измерения очень важен для проведения надежных измерений и получения высокой точности. Необходимые условия для получения хороших результатов измерения:

Должен полностью сформироваться осесимметричный профиль потока.

Важно соблюдать дистанцию от таких возмущающих элементов до места измерения. Для большинства случаев достаточно выдержать прямолинейную дистанцию приходящего участка трубопровода равным 40 его диаметрам и для исходящего участка длина должна быть не менее 5 диаметров трубопровода (Рисунок 7-1).

Правильная установка зонда с оптической головкой — важнейшее условие безошибочных измерений. Это гарантирует, что сигнал будет принять при оптимальных условиях и оценен правильно.

* - при использовании турбулизатора потока приходящий участок измерительного трубопровода может быть сокращен до 10 DN.

Рисунок 7-1 Выбор места измерения

Из-за большого разнообразия применений и различных факторов, влияющих на измерение, не существует стандартного решения по выбору точки измерения. Необходимо учитывать следующие факторы:

• Диаметр, материал, покрытие и форма трубы

- Проходящий в трубе газ
- Наличие жидкости и твердых частиц в газе

Старайтесь не измерять

- поблизости деформаций и дефектов на трубе
- рядом со сварными швами

Избегайте мест, где могут быть отложения в трубе.

Убедитесь, что температура в точке измерения находится в диапазоне рабочих температур зонда (см. технические характеристики в Приложении А).

Выберите расположение процессора оптического расходомера и нагревателя (если он есть) в пределах досягаемости кабеля до точки измерения. Убедитесь, что температура в точке измерения находится в диапазоне рабочих температур процессора и нагревателя (см. технические характеристики в Приложении А).

Точку измерения предпочтительно выбирать на горизонтальном участке трубопровода. Зонд должен входить в трубу параллельно земле в осевой плоскости трубопровода.

Невозмущенный профиль потока

Многие компоненты трубопровода вызывают возмущение профиля потока, например, колена, задвижки, клапаны, насосы, Т-соединения, редукторы и диффузоры. Из-за этих возмущающих элементов профиль потока становится отличным от осесимметричного. Правильный выбор точки измерения делает возможным снизить влияние источников возмущения.

Очень важно соблюдать дистанцию от таких возмущающих элементов до точки измерения. Только в этом случае мы можем предположить, что профиль потока в трубе полностью сформирован.

Для большинства случаев достаточно выдержать прямолинейную дистанцию приходящего участка трубопровода равным 40 его диаметрам и для исходящего участка длина должна быть не менее 10 диаметров трубопровода.

На входе L ≥ 40 D

Расходомер Focus Probe сможет измерять и при меньших расстояниях от источника возмущения, но при этом увеличится погрешность измерения. Ниже приводится таблица влияния источника возмущения (двойного колена) на погрешность измерения.

	Погрешность измерения на расстоянии 10D	Погрешность измерения на расстоянии 20D	Погрешность измерения на расстоянии 40D
Источник			
возмущения -	± 6% для скоростей выше 1 м/с	± 4% для скоростей выше 1 м/с	± 2% для скоростей выше 1 м/с
двойное колено			

В результате исследований влияния источников возмущения на погрешность измерения оптическим расходомером, обнаружилось, что при погружении измерительного окна зонда на глубину ¼ R такое влияние минимально. Поэтому предпочтительней с точки зрения минимизации влияния места установки на погрешность измерения является погружение зонда на глубину ¼ R трубопровода и выдерживание прямолинейных участков трубопровода на входе – 40D, на выходе – 10D. В процессор расходомера зашиты таблицы Рейнолдса для расчета усредненной скорости потока при вставке зонда на ¼ R трубы для большинства стандартных диаметров трубопроводов и на 1 R для трубопроводов диаметром менее 150 мм.

8. Основные меры предосторожности

8.1. Первичный осмотр

Прибор уже был тщательно протестирован на заводе. После получения прибора, пожалуйста, осмотрите его, чтобы убедиться, что при транспортировке он не был поврежден.

Пожалуйста, убедитесь, что технические характеристики и комплектация прибора, который Вы получили, соответствуют характеристикам, указанным в Вашем заказе. Модели и серийные номера указаны на пластинах/наклейках на каждом блоке, входящих в состав оптического расходомера.

Focus® Probe — точный измерительный прибор, и с ним необходимо обращаться осторожно. Для получения хороших результатов измерения и для того, чтобы не повредить прибор, очень важно выполнять инструкции, данные в настоящем руководстве по эксплуатации, а в особенности соблюдать следующие правила:

Предохраняйте прибор от чрезмерных ударов.

Сохраняйте в чистоте все составные части расходомера, в особенности оптический зонд.

Обращайтесь с оптоволоконными кабелями очень осторожно (не допускайте их сильного изгиба).

Правильно присоединяйте питание (вольтаж, частота, заземление).

Убедитесь, что параметры окружающей среды соответствуют указанным в технических характеристиках. Учитывайте степень защиты прибора.

8.2. Меры безопасности при работе с лазером

Следую нормальным условиям работы, система является **лазерным продуктом 1** класса и обеспечивает нулевой доступ к лазерному излучения. Процедуры, предполагающие техническое обслуживание позволяют доступ к уровням лазерного излучения класса 3В. Эти процедуры должны выполняться квалифицированным персоналом, пожалуйста обратитесь к главе технического обслуживания данного руководства для получения информации относительно сервисного тренинга. Лазерное облучение Класса 3В означает, что прямое попадание луча нормально опасно, но рассеянные отражения – нормально безопасны. В случае с системой выходные излучения находятся возле нижнего предела Класса 3В (между 5 и 15 мВт), повышая таким образом безопасность, при попадании в глаза диффузного отражения.

В данном приборе видимое прямое лазерное излучение возможно тогда, когда от оптического процессора расходомера (ОПР) отсоединен оптоволоконный кабель, а питание на ОПР было включено. Во время установки или извлечения какого-либо компонента из ОПР необходимо отключать подаваемое на него питание. Выходное излучение в видимом диапазоне производится лазерным светодиодом и при прямом попадании в глаза оно небезопасно, либо при рассматривании с использованием оптических приборов, таких как лупа, микроскоп или ручной усилитель.

<u>ПРЕДОСТЕРЕЖЕНИЕ!</u>

ВНИМАНИЕ: ИСПОЛЬЗОВАНИЕ ПРОЦЕДУР КОНТРОЛЯ ИЛИ НАСТРОЙКИ ИЛИ РАБОТЫ ОТЛИЧНЫХ ОТ ОПИСАННЫХ В ДАННОМ РУКОВОДСТВЕ МОЖЕТ ПРИВЕСТИ К ОПАСНОМУ ОБЛУЧЕНИЮ ЛАЗЕРОМ!

8.3. Использование расходомера во взрывоопасной атмосфере

соответические расходомеры газа Focus® Probe должны применяться в присвоенной маркировкой взрывозащиты, указанных в Ех-приложении к Сертификату Соответствия.

Таблица 8-1: Технические данные контроллера OFP-XP-C1Z1

Маркировка:	1Exd IIBT6	
Тип защиты:	Взрывонепроницаемая оболочка	
Степень защиты:	IP66	
Взрывозащитная		
температура:	01 -40=C до 50=C	

Таблица 8-2 Технические данные источника питания нагревателя OFA-HTR-PS-INS-XP

Маркировка:	1Exd[ia]IIBT6 X	
	Искробезопасноая электрическая цепь уровня "іа",	
тип защиты.	взрывонепроницаемая оболочка	
Степень защиты:	IP54	
Взрывозащитная	от -40ºС до 50ºС	
температура:		

Таблица 8-3: Технические данные оптической головки (зонда) с нагревателем

Маркировка:	1ExialICT3	
Тип защиты:	Искробезопасноая электрическая цепь уровня "іа"	
Степень защиты:	IP54	
Взрывозащитная температура:	от -40ºС до 135ºС	

Таблица 8-4: Параметры электропитания

1/01/7007.500	- напряжение (В):	< 24
контроллер	- мощность (Вт):	< 4,8

Источник питания	- напряжение (В):	< 24
нагревателя	- мощность (Вт):	< 4,6

9. Программирование процессора Focus Probe

Перед тем, как установить узлы расходомера на выбранной точке измерения, необходимо ввести исходные данные трубопровода, параметры измеряемой среды и окружающей среды в процессор оптического расходомера.

Поскольку программирование расходомера происходит при открытом взрывобезопасном корпусе, выполнять эту операцию можно только во взрывобезопасной зоне.

Для программирования процессора оптического расходомера (далее - процессора) понадобится источник питания 10 – 30 В постоянного тока и компьютер, работающим в среде Windows, с интерфейсом RS 232, а также интерфейсный кабель, входящий в комплект поставки расходомера Focus Probe.

Перед подключением питания к процессору оптического расходомера для предотвращения попадания лазерного излучения на сетчатку глаз, убедитесь в том, что оптический разъем на выходе корпуса процессора (или на конце оптоволоконного кабеля для варианта с предустановленным в корпус процессора оптоволоконным кабелем) закрыт защитным колпачком.

Подведите питание на контакты 1 и 2 разъема процессора (см. Рисунок 9-1).

Nº		Мариировиа	
конт	акта	Маркировка	
1+	2-	Вход +10-30 В постоянного тока	
3	+	RS-485A/RS-232TX	
4	ŀ-	RS-485B/RS-232TX	
5	5	Свободный	
6+	7-	4-20мА выход скорости/расхода	
8+	9-	4-20мА вход температуры	
10+	11-	4-20мА вход давления	
12		Свободный	
		Выход частотного сигнала с открытым	
13+	14-	коллектором для передачи информации по	
		скорости/расходу	
15+	16-	Выход аварийного сигнала с открытым	
10+		коллектором	

Рисунок 9-1 Маркировка контактов

Соедините последовательный порт 2 процессора (Рисунок 9-1) с последовательным портом компьютера при помощи интерфейсного кабеля RS 232, входящего в комплект поставки расходомера Focus Probe.

Рисунок 9-2 Электронный блок процессора

Введите необходимые параметры и таблицы пересчета в процессор при помощи программы **OFM Monitor**.

Связь между компьютером, работающим в среде Windows, и процессором может быть установлена следующими способами:

RS-232

- Программа связи Hyper Terminal Windows (RS-232)
- Программное обеспечение **OFM Monitor** (RS-232)

RS-485

- Кабель последовательной связи (номер детали Photon Control ACA-0010A
- Программное обеспечение **OFM Monitor** (RS-485)

Установление связи			
Наименование	Значение / примечания	Описание	
Скорость в бодах	38400		
Паритет	Нет (N)		
Стоп-биты	1		
Регулирование	Нет		
расхода			
Режим ModBus	RTU		
Скорость в бодах	38400		
Пароль для входа в	coolmeter (нижний регистр)		
программу OFM			
Monitor врежиме			
программирования			

Справочная информация					
rd <register></register>	Встроенная команда для прочтения зарегистрированного значения адреса регистра.	Пример: для прочтения регистра суммарной скорости 40005, наберите: rd 5 <enter> Не включайте "4" из адреса регистра и начальные нули.</enter>			
wd <register> <value></value></register>	Встроенная команда для записи значения в адрес регистра.	Пример: для изменения регистра диаметра трубы 40092, наберите: wd 92 150.05			
cliO	Активировать связь				
cli 1	Приостановить связь				
log <register1> <space> <register15></register15></space></register1>	Добавляет значения в регистр, которые должны пройти через порт RS-232 процессора OP. Все занесенные значения могут быть также сохранены во внутренней памяти путем записывания "1" в регистре 40032 [wd 32 1].	Пример: Внести текущий номер таблицы Рейнольдса регистра 40152 и регистра минимального порога 40042: Внести 152 42 (вставить пробелы между тремя			

9.1. Программирование Процессора ОР при помощи программы OFM Monitor

Программное обеспечение монитора оптического расходомера **OFM Monitor** было разработано исключительно для системы контроля оптического расходомера Photon Control. Для связи с расходомером можно использовать два режима связи:

- RS-232 ChendBus (протокол последовательной связи, принадлежащий компании Photon Control)
- RS-485 ModBus (стандартный протокол связи)

RS-232 ChendBus включается по умолчанию при первоначальном запуске программы монитора расходомера. Для организации связи с портом конфигурации RS-232 на процессоре оптического расходомера потребуется 4-х штырьковый 3,5-мм разъем для кабеля связи DB-9FOFP. Это соединение используется также для обновления (апгрейда) микропрограммного обеспечения и для проведения диагностики. Желательно, чтобы такая связь осуществлялась на коротком расстоянии (максимум 10 м).

Для просмотра используемого протокола:

- Щелкните <Protocols>
 - о Протокол, выделенный серым цветом, будет использоваться.

Переключение между двумя протоколами возможно только после первоначального запуска программного обеспечения.

Процессор данных оптического расходомера оснащен двумя выходными полудуплексными двухпроводными устройствами ModBus RTU, позволяющими считывать и записывать данные на процессор данных оптического расходомера с помощью любого устройства, совместимого с ModBus RTU. Для использования

монитора оптического расходомера с целью связи с процессором данных оптического расходомера через RS-485 потребуется конвертер, такой как B&B 485LDRC9, для связи между RS-485 и RS-232. Это соединение желательно использовать на большом расстоянии с постоянной связью по проводам с процессором данных оптического расходомера, но при этом будет наблюдаться меньшая скорость связи по сравнению с протоколом ChendBus RS-232.

Для обеспечения связи RS-485 с программным обеспечением монитора оптического расходомера используйте следующие действия:

- Запустите монитор оптического расходомера.
- Перейти в Protocols>ModBus RTU
- Кликнуть Communication, выбрать соответствующий порт СОМ, ввести пароль и выбрать ОК.

Переключение между протоколами возможно только после начального включения программного обеспечения.

9.1.1. Работа с регистрами ПОР

Для чтения/записи регистров ПОР в программе **OFM Monitor** используется командная строка, расположенная в правом нижнем углу окошка **Set Parameters (**Рисунок 9-3).

FM Monitor7.5 Nov14 2005(with 1	irmware SCC-0032D-A-4.2)					
nunication Measuring Values SetParamet	ers Unit Conversion Registers Proto	cols View Help E	ixit			
	~					
Measuring Values	Set Parameters	L	Report		Register	\$
	Minim Sam Alarm Thr Out [um Threshold [mV] pling Interval [Sec] eshold [Particles/m] Average Count Zero Count Out Data Count Out Data Count Oata Threshold [%] Diameter [mm] Specific Gravity Viscosity[centipose] er Calibration Factor	8 1 1 5 10 3 50 50 0.04925 0.625 0.625 0.000010397 1.0	Laser Duty Cycle 1 Laser1 [mA Laser2 [mA AutoThreshold Threshold 1 [mV Threshold 2 [mV Heater Duty Cycle Pressure Type Atmospheric Pressure	: 0: 1 70 1 70 1 70 1 70 1 70 1 70 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	C onfiguration Input
	Optical	Firmware Version OFP S/N OFH S/N Cable Serial Number				and Output
			Chendbus	OFFLINE!	Measuring	Logged In

Рисунок 9-3: Расположение командной строки в программе OFM Monitor

9.1.2. Обновление времени и даты

Обновление времени и даты выполняется с использованием встроенных команд путем ввода их в командную строку. Настройка правильного времени и даты важна при введении данных во внутреннюю память ПОР.

Пример:

- 05-18-07 (18 мая 2007)
- 13:30:30 (1:30 пополудни)

Таблица 9-1 Регистры времени и даты.

Наименование	Регистр	Пример
Год	40160	wd160 7
Месяц	40161	wd 161 05
День	40162	wd 162 18
Час	40163	wd 163 13
Минута	40164	wd 164 30
Секунда	40165	wd 164 30

9.1.3. Ввод номера узла и серийного номера

Ввод номера узла и серийного номера устройств в систему оптического расходомера должен выполняться со справочными целями. Для обновления дисплея щелкните <Read Settings>.

Таблица 9-2. Текстовые поля номера монитора и серийного номера оптического расходомера.

Наименование	Регистр	Описание
Версия встроенного	42000	Показывает версию встроенного
отонммертод		программного обеспечения процессора
обеспечения		данных оптического расходомера [только чтение]
Серийный номер	42100	Текстовое поле для сохранения номера узла
процессора данных		и серийного номера процессора данных оптического расходомера [чтение/запись]
Серийный номер	42200	Тестовое поле для сохранения номера
оптической головки		узла и серийного номера головки зонда
оптической толовки		оптического расходомера [чтение/запись]
Серийный номер	42300	Тестовое поле для сохранения номера узла и
оптического кабеля		серийного номера волоконно-оптического кабеля [чтение/запись]

Рисунок 9-4. Поля для введения номера узла и серийного номера системы оптического расходомера.

9.1.4. Ввод параметров трубопровода и измеряемой среды

Данные технологического процесса, в частности диаметр трубы, относительная плотность, динамическая вязкость и измеренная локальная скорость движения используются для расчета числа Рейнольдса. Затем число Рейнольдса вводится в калибровочную таблицу Рейнольдса потока для преобразования локальной скорости в скорость потока. Плотность движущегося газа должна определяться с помощью газового хроматографа или вводиться вручную.

Ввести параметры можно в соответствующие поля на вкладке **Configuration** окошка **Set Parameters** (Рисунок 9-5) или путем ввода данных в регистры (Таблица 9-3.).

Рисунок 9-5. Поля ввода параметров трубы и газа в программе OFM Monitor

Наименование	Адрес	Описание
Диаметр трубы	40092	Внутренний диаметр трубы [мм] т.е. 4" SCH40 ПВХ = 154,05 мм
Относительна я плотность (SG)	40094	SG = Плотность газа/плотность воздуха Напрмер 100% метан при 20°C, SG = 0,68 кг/м ³ / 1,2 кг/м ³ = 0,57
Динамическая вязкость (константа)	40093	Динамическая вязкость [сантипуаз] = кинематическая вязкость/плотность, т.е. для метана = 0,018 сП

Таблица 9-3. Адреса регистров параметров трубы и газа.

Ввод вязкости среды.

Вязкость большинства многокомпонентных газов зависит от температуры. Если влияние температуры на вязкость незначительно, можно использовать постоянное значение вязкости. Если же этим влиянием нельзя пренебречь, необходимо создать и загрузить текстовый файл зависимости вязкости от температуры. Можно определить до 10 характерных точек зависимости вязкости и температуры. Если количество точек меньше 10, лишние места в таблице заполняются нулями. Значения вязкости вводятся в первую строку файла, температура вводится во вторую строку файла. Значения разделяются между собой клавишей "Tab". Формат данных в файле следующий:

Viscosity:	0.009	0.01	0.011	0.012	0.014	0	0	0	0	0
Temperature:	-40	-20	0	20	40	0	0	0	0	0

Между характерными точками используется кусочно-линейная аппроксимация.

Для загрузки файла зависимости вязкости от температуры необходимо поставить галочку в поле «File» сразу за полем значений вязкости (Рисунок 9-5) и в открывшемся окне проводника выбрать необходимый файл.

Ввод давления и температуры измеряемой среды

Значения давления и температуры измеряемой среды считываются ПОР автоматически с датчиков давления и температуры. При отсутствии датчиков значения температуру измеряемой среды (^oC) и ее абсолютного давления (МПа) можно ввести вручную в программе **OFM Monitor,** в окошке Measuring Values (Рисунок 9-6).

Рисунок 9-6 Поля ввода давления и температуры измеряемой среды

9.1.5. Конфигурирование аналоговых входов / выходов

Конфигурирование и калибровка сигналов входа по температуре (4-20мА)

Сигналы входа по давлению и температуре используются для расчета корректировочной таблицы Рейнольдса и стандартного расхода. Пропустите этот этап, если температурный датчик, подключенный к устройствам входа по температуре, отсутствует — процессор данных оптического расходомера автоматически использует данные, введенные в таблицу измеренных значений.

Устройства входа по температуре являются 10-битовыми **пассивными** устройствами или устройствами с уменьшением значения тока 4-20мА. Для эксплуатации устройства входа требуется датчик температуры, получающий питание по токовой петле, либо питание может подаваться по проводам последовательно для активации контура. В большинстве случаев аналоговые устройства входа должны калиброваться. Для

конфигурирования устройства входа используются четыре параметра, как показано ниже.

Наименование	Адрес регистра	Описание
Ноль	40122	Настраивает смещение нуля (4мА)
Градиент	40123	Настраивает макс. смещение (20мА)
Минимум	40121	Указывает значение при 4мА
Максимум	40120	Указывает значение при 20мА

Таблица 9-4. Параметры устройства входа по температуре.

Конфигурирование устройства входа по температуре

- Найдите минимальное значение температуры датчика (значение при 4мА) и максимальное (значение при 20мА) значение.
- Введите значения минимального и максимального параметров как ⁰С в Set Parameters>Input and Output.

Калибровка устройства входа по температуре

- Подайте ток 4мА с использованием, в идеале, датчика температуры.
- Снимите показания температуры на мониторе оптического расходомера.
- Если значение не равно введенному значению по минимальной температуре в устройстве ввода:
 - Увеличивайте/уменьшайте параметр Zero (ноль) до тех пор, пока значение температуры на мониторе оптического расходомера не сравняется с показателями датчика температуры.
- Подайте ток 20мА.
- Снимите показания по температуре на мониторе оптического расходомера.

• Если значение температуры не равно введенному значению в устройстве ввода по максимальной температуре:

- Увеличивайте/уменьшайте параметр Slope (градиент) до тех пор, пока температура на мониторе оптического расходомера не совпадет с показаниями датчика температуры.
- Калибровка выполнена.
- Подайте 0%, 50% и 100% для проверки правильности калибрования.

-Analog Input for Tempera Zero	kure (C) Slope 10	Minimum -40	Maximum 100	ingui
-Analog Input for Pressure	MPa] Slope 10	Minimun 0.010	Maximum 10.0	and Output
	Chendbus	Level 2	Measuring	Logged in

Рисунок 9-7. Параметры настройки устройства входа по температуре и давлению.

Конфигурирование и калибровка устройства входа по давлению (4-20мА)

Датчики давления представляют собой пассивными (с уменьшающимся током) 10-ти битовыми аналоговыми устройствами ввода на 4-20мА. Пропустите этот этап, если датчик давления в терминалах устройства входа по давлению отсутствует – процессор данных оптического расходомера будет автоматически использовать значение давления, введенное вручную) и отраженное на дисплее в таблице измеренных значений. Датчики датчика давления должны иметь постоянное питание от сети. Если датчики давления также являются пассивными, то подача питания должна обеспечиваться за счет последовательной подачи из контура питания. В конфигурировании участвуют шесть параметров:

Наименование	Адрес регистра	Описание	
Ноль	40126	Настраивает смещение нуля (4мА)	
Градиент	40127	Настраивает макс. смещение (20мA offset	
Минимум	40125	Указывается при 4мА	
Максимум	40124	Указывает значение при 20мА	
Тип давлени	40129	абсолютное / избыточное (absolute/gauge)	
Атмосферное давление	40128	Требуемый тип давления = избыточное	

⊢Analog Input for Pressu	re [MPa]			NO DI
Zero	Slope 1.0	Minimun 0.010	Maximum 10.0	
	Chendbus	Level 2	Measuring	Logged In

Рисунок 9-8. Параметры конфигурирования устройства входа по давлению.

Pressure Type <mark>Absolute</mark>	_
Read Settings	Input a
-ER0439-July28-07 osy !48-50070826\	and Output
20A-50030254	

Рисунок 9-9. Параметр типа давления согласно таблице Set Parameters>Configuration.

Конфигурирование устройства входа по давлению

 Выбрать тип датчика давления как Absolute (абсолютное) или Gauge (избыточное) в таблице Set Parameters>Configuration.
 о Если тип давления указан как Gauge (избыточное), введите значение атмосферного давления.

- Найдите минимальное (при значении тока 4мА) и максимальное (при значении тока 20мА) значения датчика давления.
- Введите параметры минимального и максимального значений в Set Parameters>Input и Output, выраженные в МПа.

В разные поля можно ввести значения других единицах измерения путем:

• Выделения Minimum или Maximum.

• Выпадающий список позволит пользователю выбрать МПа, кПа или фунт/кв. дюйм (psi).

- Выбрать нужную единицу измерения.
- Ввести значение в поля, выбранные в выпадающем списке, затем нажмите клавишу <Enter>.
- Значение будет преобразовано в МПа.

Рисунок 9-10. Выпадающий список по давление аналогового устройства входа.

Калибровка устройства входа по давлению

- Подайте ток 4мА с использованием, в идеале, датчика давления.
- Снимите значение давления на мониторе оптического расходомера.
- Если значение не равно введенному значению в устройстве ввода минимального давления:

о Увеличивайте/уменьшайте параметр Zero (ноль), пока не сравняется значение датчика давления на мониторе оптического расходомера.

- Подайте ток 20мА.
- Снимите показания давления на мониторе оптического расходомера. Если значение не равно введенному значению в устройстве ввода максимального давления:

 Увеличивайте/уменьшайте параметр Slope (градиент), пока значение давления на мониторе оптического расходомера не сравняется со значением датчика давления.

- Калибровка выполнена.
- Подайте 0%, 50% и 100% для проверки правильности калибровки.

Примечание

Значения давления на мониторе оптического расходомера всегда показывается как абсолютное. Если тип давления = Gauge (избыточное), то показываемое значение будет:

Давление, показываемое на мониторе оптического расходомера (40015) = избыточное давление + атмосферное давление {40128}

Пример: Дано: Атмосферное давление: 0,101325 МПа Давление на мониторе оптического расходомера: 0,200 МПа

Ответ: Избыточное давление = 0,098675 МПа

Конфигурирование аналогового выходного устройства расходомера (4-20мА)

Выходное устройство расходомера является пассивным токовым выходом, 4-20мА, с 12битным разрешением и может конфигурироваться для вывода одного из следующих значений:

- Скорости по осевой линии
- Скорости потока
- Стандартного расхода
- Приведенного расхода

Частотное выходное устройство расходомера также использует те же нижеперечисленные параметры, что и аналоговое выходное устройством (4-20мА):

- Тип выходного устройства {40105}
- Минимум {40101}
- Максимум {40100}

Если аналоговое устройство ввода пользователя не имеет питания, что бывает в большинстве случаев, то питание должно подаваться из контура питания.

5	et Parameters	Peport 1	Registers
0.0 500	C-Freque	ncy Output	Edit Calibration Table
0 0.0 500	Freque	ncy Multiplier 14/bulk DCenterline 14/bulk 24.ctual flow rate 35 tandard flow rate	Read Settings
0.0 15.0 500	Analog Output Zaro <mark>200</mark>	Calbration Slope <u>1.0</u> Minimum <u>0.01</u>	Maximum 550

Рисунок 9-11. Параметры конфигурирования аналогового выходного устройства расходомера

Примечание

Частотное выходное устройство и аналоговое выходное устройство выводят одинаковый параметр, заданный в поле **Output Typ**e (Тип выхода).

Конфигурирование выходных параметров аналогового устройства расходомера (4-20мА)

- Перейдите в Set Parameters> вкладка Input and Output
- Выберите желаемый тип выходного устройства
- Введите **минимальное значение** при 4мА, затем нажмите клавишу <Enter>. о Примечание: Самым низким значением минимума будет 0,01
- Введите максимальное значение при 20мА, затем нажмите клавишу < Enter>.

Подсказка

Суммарная скорость также может быть преобразована в фактический расход с использованием следующей формулы:

$$Q = V_{\text{bulk}} \times \pi \times (d/2)^2$$

Где Q = расход $[m^3/c]$

 $v_{bu}I_k$ = суммарная скоростьу [м/с]

d = внутренний диаметр трубопровода [метры]

Пример:

Каков расход в Е³м³/сутки (тысяч кубических метров в сутки) внутри трубы SCH40 оптического расходомера диаметром 6", если измеритель оптического расходомера показывает суммарную скорость равную 2м/с?

Ответ:

Номинальный внутренний диаметр трубы SCH40 диаметром 6" = 6,065" или 0,154051 м.

Q = 2м/с x 3,1416 x $(0,154051 \text{ m/2})^2$ = 0,0373 м³/с = 0,0373 м³/с x 3600с/1 ч. x 24ч./1 сутки x 0,001 E3m³/m³ Q = 3,22 Е³м³/сутки

Калибровка аналогового выходного устройства расходомера

а) Настройка смещения нуля (4мА)

- Найдите встроенное командное тестовое поле.
- Наберите "cli 1"
 - о Выходной сигнал данных по протеканию приостанавливается.
- Наберите "rd 48" и запишите отображенное значение для последующего сравнения.
- Наберите "rd 105" и запишите отображенное значение для последующего сравнения.
- Наберите "wd 48 0"

о Деактивируются адаптивные параметры для увеличения отображения обновления времени.

- Наберите "wd 105 1". о Тип аналогового выходного устройства устанавливается в положение суммарной скорости.
- Наберите "set thr 1000". • о Устанавливается чувствительность к частицам на минимум для принудительного появления показателя 0 расхода.
- Подождите, пока показания суммарной скорости вернется к нулю.
- Проверьте показания в считывающем устройстве (ПЛК/РСК/диспетчерская) чтобы убедиться, что они соответствуют минимуму.
- Если значение не равно введенному значению минимума во входном устройстве расходомера:

о Увеличивайте/уменьшайте параметр Zero (нуль) до тех пор, пока значение на выходном устройстве монитора оптического расходомера не сравняется со значением считывающего устройства.

Калибровка смещения нуля закончено.

b) Настройка смещения градиента (20мА)

- Наберите "test2"
 - о выходное устройство настраивается на 20мА.
- Проверьте показания на считывающем устройстве (ПЛК/РСК/диспетчерская) на ٠ соответствие максимуму.
- Если значение не равно значению, введенному во входное устройство расходомера по максимуму:
 - о Увеличивайте/уменьшайте параметр Zero (нуль) до тех пор, пока значение расхода на выходном устройстве монитора оптического расходомера не сравняется со значением считывающего устройства.
- Восстановить все измененные значения для принудительного максимального расхода (20мА).
 - о Наберите "test 0 <enter>"
 - о Наберите "wd 105 xx<enter>"о Наберите "set thr 5 <enter>"

- о Наберите "wd 48 xx <enter>" о Наберите "cli 0 <enter>"
- Калибровка выходного устройства на ток 20мА выполнена.

Конфигурирование частотного выходного устройства расходомера

Частотное выходное устройство является конфигурацией Open-Collector (открытый коллектор) и может настраиваться для вывода одного из следующих параметров:

- Скорость по осевой линии
- Усредненная скорость
- Фактический расход
- Приведенный расход

Частотное выходное устройство расходомера также использует следующие параметры совместно с аналоговым выходным устройством расходомера (4-20мА):

- Тип выходного устройства {40105} •
- Минимум {40101}
- Максимум {40100} •
- Единица измерения расхода {40111}

таблица 9-5. Связанные регистры частотного выходного устройства.

Наименование	Адрес регистра	Описание
Единица скорости	40110	4-20мА и частотная единица измерения, если тип выходного сигнала установлен на скорость (V по осевой линии и Vпотока). Опции: (0) м/с (1) фут./с
Единица расхода	40111	 4-20мА и частотная единица измерения, если тип выходного сигнала установлен на расход (фактический и стандартный расход) (0) м³/ч (1)куб.фут./ч (2) еЗмЗ/сутки (3) тысяч куб. футов в сутки
Тип выходного сигнала	40105	Выбирается тип характеристики расхода для аналогового (4-20мА) и частотного выходного сигнала. Опции: (0) Скорость по осевой линии (1) Скорость потока (2) Фактический расход (3) Приведенный расход
Минимум	40101	Устанавливает минимальное значение расхода для аналогового (4-20мА) и частотного выходного сигнала
Максимум	40100	Устанавливает минимальное значение расхода для аналогового (4- 20мА) и частотного выходного

Частотный множитель	40106	Коэффициент, умножаемый на значение величины расхода для получения частотного выходного сигнала. Fout = Flowx Fmult Пример: Частотный множитель = 10 типов выходного сигнала = 1 единице расхода = 0 суммарной скорости = 5м/с. Частотный выходной сигнал = 5м/с x 10
		= 50Гц.

Пример 1. Нахождение минимального и максимального значений ПЛК.

Оптический расходомер конфигурирован в соответствии с нижеприведенными значениями:

Наименование	Регистр	Значение
Диаметр	40092	152,05 (мм)
Частотный/импульсный режим	40104	0 (частота)
Аналоговый выходной сигнал на	40101	0,01
минимуме		
Аналоговый выходной сигнал на	40100	100
максимуме		
Частотный множитель	40106	10
Единица измерения скорости	40110	0 (м/с)

Решение:

(1) Максимальная частота = максимальное значение параметра х частотный множитель

(2) Максимальная частота = 100м/с х 10 = 1000 Гц.

(Убедитесь в том, что это значение не превышает максимальный частотный входной сигнал счетчика)

(3) максимальный расход = максимальная скорость х площадь внутреннего диаметра трубы.

(4) = $100 \text{ m/c} \times \pi \times (0, 15205 \text{ m/2})^2$

(5) Максимальный расход = 1,816 м3/с или

- = 1.816 м3/с х 3600с/1 ч х 24ч/сутки х 0,001 ЕЗм3/м3
- = 156,88 ЕЗм3/сутки (максимум)

(6) Минимальный расход = 0 ЕЗм3/сутки

Примечание:

Если ПОР включает опции дисплея/сумматора, то он передает данные на дисплей / блок сумматора с использованием частотного выходного сигнала, поэтому важно, чтобы максимальная частота не превышала 1000 Гц, так как максимальная входная частота частота частотного входа сумматора – 1000 Гц.

Испытание частотного выходного сигнала

С целью поиска и устранения неисправностей, а также для конфигурирования частотный выходной сигнал может быть принудительно переведен на максимальный уровень.

- Найдите встроенное командное текстовое поле.
- Наберите "rd 105 <enter>" и запишите отраженные значения для последующего сравнения.
- Наберите "wd 105 1 <enter>"
 - о Настраивает тип аналогового сигнала расхода на v_{bulk} (средняя скорость потока)
- Наберите "test 2"
 - о Настраивает аналоговый выходной сигнал на максимум {40100}.
- Проверьте на вкладке регистра, что v_{bulk} стабилен на максимальном значении.
- Проверьте частоту с применением осциллографа, если таковой имеется.
 - о Проверьте частоту = максимум х частотный множитель
 - о Держите частоту ниже уровня 1000Гц, когда это возможно, для того, чтобы избежать искажения сигнала.
- Установите значение на исходный уровень.
 - о Наберите "wd 105 xx <enter>
 - о Наберите "test 0 <enter>

Расчет импульсного коэффициента

Импульсный коэффициент применяется для конфигурации импульсного выхода расхода. Импульсный коэффициент обычно определяется соотношением объема к импульсу или количества импульсов к объему.

Пример. Определение импульсного коэффициента

Настройка оптического расходомера

Наименование	Регистр	Значение
Диаметр	40092	152,05 (мм)
Частотный / импульсный режим	40104	0 (частота)
Аналоговый выходной сигнал по	40101	0,01
максимуму		
Аналоговый выходной сигнал по минимуму	40100	100
Частотный множитель	40106	10
Единица измерения скорости	40111	0 (м3/ч)

Настройка ПЛК

Наименование	Значение
Минимальный расход	0 ЕЗм ³ /сутки
Максимальный расход	5 ЕЗм ³ /сутки

Решение:

(1)Установите единицу измерения расхода на ЕЗм³/сутки (40111 =2)

(2) Установите тип расхода на Qactual (фактический) {40111 =2} или Qstandard

(приведенный) {40111 =3}

(3) Рассчитайте максимальное значение для частоты 1000Гц:

(4) Максимальная частота = максимальный расход х частотный множитель.

(5)1000 Гц = 5 [ЕЗм3/сутки] х частотный множитель.

(6) Частотный множитель = 1000 Гц/5 = 200.

(7) Установите частотный множитель {40106} на значение 200.

(8) Рассчитайте импульсный коэффициент (PF):

(9) Импульсный коэффициент * 5ЕЗм3/сутки = 1000 Гц.

(10)Импульсный коэффициент * 5ЕЗм³/сутки х 1сутки /24ч х 1ч/3600с х 1000м3/1ЕЗм³ =

1000 импульсов/с

(11) Импульсный коэффициент * 0,0579 м³/с = 1000 импульсов/с.

(12) Импульсный коэффициент = 1000 импульсов / 0,0579м³

(13) Импульсный коэффициент = 17280 импульсов/м3 или

(14)Импульсный коэффициент = 1м³ / 17280 импульсов = 5,787 х 10-5м³ / импульс.

9.1.6. Конфигурирование калибровочной таблицы оптического расходомера

Загрузка поправочной таблицы Рейнольдса

Поправочная таблица числа Рейнольдса применяется для преобразования скорости потока в точке измерения в значение средней скорости потока. Поправочная таблица привязана к характеристикам трубопровода. Калибровочная таблица для трубопровода диаметром 4 дюйма не может применяться для расчетов по трубопроводу диаметром 6 дюймов; кроме того, применение поправочной таблицы должно отвечать глубине введения зонда Focus (1/4 радиуса или осевая линия (1R)).

Загрузка калибровочной таблицы

Калибровочная таблица Рейнольдса может быть загружена из текстового файла с использованием программы OFM Monitor:

- Перейдите к закладке Set Parameters>Input/Output.
- Щелкните на <Edit Calibration Table>.
- Появится калибровочная таблица.
- Кнопка <Edit Calibration Table> станет выглядеть как <Update Calibration Table>
- Щелкните на кнопке < Input Table from Text File>
- Выберите из списка нужную калибровочную таблицу.
- Щелкните на <Update Calibration Table>.
- Подкачка калибровочной таблицы выполнена.

Measuring Values	Set Param	sters Apport	Registers
01-123-00.02-57-18: 0 0.0 100.0 100.0 579:397 15.0 0.101 01-123-00.02-57-19: 0 0.0 100.0 100.0	0 0 591 262 1 0 0 591 262	OFFiequency Output Output Type Tequency Multiplet To 0	Edit Calibration Table

Рисунок 9-12. В калибровочную таблицу можно войти, щелкнув на кнопку Edit calibration, расположенную на закладке Set parameters>Input/Output

Measuring Values		leasuing Values Set Parameters Report		I	Registers		
Calibration Table		-					
Renolds No	Vel / Vbulk	D-Frequ	ency Output				
1200000	1.200000		Output Tupe		Update Calibration Table		
528005	1.222539						
387156	1.227308	Freq.	ency Multiplier 10.0				
131540	1.238314				Read Settings		
29194	1.246824						
33679	1.234728						
1	1.250000	- Analog Output	Calibration				
0	0.0						
	0.0	Zeio	Slope 1.0	Nirimun 0.10	Maximum 100		
0	0.0						
0	0.0						
0	0.0						
0	0.0	- Analog Input f	or Temperature [C]				
	0.0						
0	0.0	Zero	Slope 1.0	Ninimuni -40	Maximum 100		
0	0.0						
0	0.0						
Input table fro	om text file	- Analog Input f	or Pressure [MPa]				
Calibration in firmware	-	Zera	Game 10	Minimum Front	Maximum 100		
		2610	Lape 1.0				

Рисунок 9-13. Окно калибровочной таблицы. После нажатия на таблицу Edit Calibration Table, кнопка становится Update Calibration Table, затем появляется калибровочная таблица.

Обновление калибровочного коэффициента

Калибровочный коэффициент применяется для настройки смещения показателей расхода. Калибровочный коэффициент берется из калибровочного сертификата, прилагаемого к головке зонда оптического расходомера (фланцевый или погружной зонд). Обычно эта цифра колеблется между 0,90 и 1,10. Если калибровочный сертификат не может быть найден, обратитесь к компании Photon Control и убедитесь в том, что головка оптического измерителя имеет номер узла и серийный номер (т.е. ASY-0148B 60051234)

Рисунок 9-14. Параметр коэффициента калибровки. Этот коэффициент используется для настройки смещения показаний расходомера. Калибровочный коэффициент может быть найден в калибровочном сертификате, прилагаемом к головке оптического расходомера.

9.1.7. Оптимизация рабочих характеристик процессора оптического расходомера
Set Parameters		Report			Registers		
	Minimum	Threshold [mV]	5	Laser Du	ty Cycle 1:	0	
	Samplin	g Interval [Sec]	1.0	La:	er1 [mA]	85	
	Alarm Thresh	old [Particles/m]	1	La	ser2[mA]	85	6
							n ng
		Average Count	5	Auto	Threshold	13	ir adii
		Zero Count	10	Thresho	ld 1 [mV]	5	3
		Out Data Count	3	Thresho	ld 2 [mV]	5	
	Out Dat	a Threshold [🎘]	50	Heater D	uty Cycle 1:	0	
		Diameter (mm)	49.25	Pres	sure Type	Absolute	Г
		Specific Gravity	0				
	Vis	cosity[centipose]	0.01200				
	Meter C	alibration Factor	1.0		Read Se	ttings	E
							a 10
	F	Firmware Version	SCC-0032I	E-2-ER04	99-July2B-	07'I	nd o
		OFP S/N	ASY	-0148B-60	070244		LE LE
		DFH S/N	ASY	-0124B-50	070826		E
-	Optical Cab	le Serial Number	ACA	-0020A-50	050324		
-							

Рисунок 9-15. Вкладка настройки процессора оптического расходомера

Обычно, система оптического расходомера должна правильно работать с параметры по умолчанию. Но если Вы уже достаточно опытный пользователь и хотите изменить некоторые параметры системы для ее более эффективной работы, вы можете изменить любой параметр. Приводимая ниже таблица приводит объяснение для каждого параметра и то, каким образом изменения повлияют на работу всей системы.

Наименование параметра	Описание	По умолча нию	Единиц а измере ния	Мини- мум	Макси мум
Minimum Threshold Миним. порог	Начинает прием, когда сигнал превышает порог	5	мВ	1	2500
Sampling interval Время выборки	Время измерения для выборки данных	1	сек.	0,5	60
Alarm Treshold Порог тревоги	Минимальный порог количества частиц. Когда количество частиц ниже этого числа, система выдает сигнал тревоги	1		1	255
Average Count Среднее	Число измерений для усреднения значений	5		1	100
Zero Count	Число измеренных нулевых	10		1	50

Таблица 9-6 Описание параметров	процессора оптического	расходомера
---------------------------------	------------------------	-------------

Количество	значений для подтверждения нуля				
нулевых					
измерений					
Out Data Count	Последовательное количество				
Количество	измеренных значений, выходящих				
запредельных	за предел данных, чтобы принять				
измерений	изменение данных	3		1	50
	Процент «хороших» данных, если				
Out Data	измеряемые значения выходят за				
Throshold	этот предел, они будут считаться				
	запредельными значениями. Этот				
порог предела	параметр используется вместе с				
данных	параметром Out Data Count , чтобы				
	убедиться, что данные изменились	50	%	1	1000
Laser Duty Cycle					
Период работы					
лазера	включается и выключается	0	1:n	0	100
Laser 1	Ток лазера 1	70	мА	0	120
Laser 2	Ток лазера 2	70	мА	0	120
Diamatar		0,0492		0,0000	
Diameter	диаметр трубы	5	м	1	0,655
Temperature	Температурный ввод	20	°C	-300	700
Viccosity	Baawacti	0,0000			0,0000
VISCOSILY	DA3ROCIE	10397		> 0	6
Gravity	Относительная плотность	0,625		0,001	10
Frequency					
Multiplier	делитель частоты	10		1	10000
May Speed	Максимальная измеренная				
Max Speed	скорость для 20 мА	100		1	300
Min Spood	Минимальная измеренная				
wini speed	скорость для 4 мА	0,1		0,01	50
Zero Speed	Калибровка нуля 4/20 мА	0		0	200
Max	Максимальная измеряемая				
Temperature	температура для 20 мА	300	°C	-300	700
Min	Минимальная измеряемая				
Temperature	температура для 4 мА	300	°C	-300	700
Zero					
Temperature	калиоровка нуля температуры	0	°C	-300	300
	Максимальное измеряемое				
iviax Pressure	давление для 20 мА	10	МПа	0,01	60
	Минимальное измеряемое				
win Pressure	давление для 4 мА	0,01	МПа	0,01	60
Zero Pressure	Калибровка нуля давления	0	МПа	-300	300

Таблица 9-7. Регистры, связанные с увеличение чувствительности к частицам.

Наименование	Регистр	Описан	ние				
Минимальный	40042	Устана	влива	ет мин	нимал	ьный порог	
порог		чувстви	ительн	ности	кчаст	ицам. Оптимальное	
		значен	ие ра		NB. Ha	строика этого значения н	а
		уровен	Ь НИЖ		приве	едет к появлению	
14	10001	Миции			тольн	и расхода.	,
интервал отоора	40061	пробл		ал дли псчета	коли	чества частиц. Установка	/
проб		этого з	начен	ие на	более	высокое значение	
		увелич	итчис	ло оп	ераци	й по подсчету частиц, но	
		, одновр	емен	но при	иведе	т к уменьшению	
Цикл работы	40063	Цикл р	аботы	лазер)ов — Д	держите в положении 0	
лазера		(непре	рывно). Доп	олнит	ельная возможность по	
hasepa		сбереж	ению	энерг	ии бу	дет внедрена в будущем.	
Лазер 1 и 2	40043 и	Ток лаз	вера в	мАві	теред	ающем канале. Держите	
•	40044	это зна	чение	е в диа	пазон	е между 85мА и 100мА.	
		Увелич	ение	тока л	азера	выше 100мА может	
		сократі	ить ср	ок слу	жоыл	азера.	
Автоматическое	40048	Наилуч	шей н	астро	йкой	будет 13. Она	
пороговое значение		автома	тичес	ки изи	леняе	г следующие параметры:	
Порог 1 и 2	40040 и	БИТ 0 =	= порс)F			
	40041	Бит 2 -	ток л - доли	азера			
		Бит 3 =	- дсли = инте	овал с	тбора	а проб	
						· · · · · · · · · · · · · · · · · · ·	
		Каждо	е знач	чение	B3BeL	иено в оинарнои шкале.	
		каждый ойттреоует, чтооы т переключал автоматическое управление битом 0 на					
		параметры бита 3.					
		Пример					
		Порог	-р. = ВКЛІ	ючить	ток ла	азера =	
		выклю	УИТЬ Д	делите	Эль = е	ЗКЛЮЧИТЬ	
		интер	вал = і	включ	ить		
		Решен	ие:				
		Бит	Бит	Бит 1	Бит	Десятичное число	
		8	4	2	1		
		1	1	0	1	8+4+1 = 13	
		Набер	ите "1	.3" для	і реги	стра 40048.	
		Ποροτ	овый	VNORA	սե [ՠ՝	/] лла обнаружения	
		частиц Автоматически настраивается битом О					
			ового Ового	значе	ния ре	егистра {40048} на "1". Че	M
		ниже это значение, тем выше чувствительность.					
		Не опускайтесь ниже 4мВ, так как электрические				е	
		помех	и при	ведут	к неп	оавильным показаниям.	
Рабочий цикл							
нагревателя Не							
применяется							

9.1.8. Запуск / прекращение регистрации данных

Регистрация данных в программе **OFM Monitor** используется для кратковременной регистрации данных.

Рисунок 9-16 Регистрация данных в мониторе оптического расходомера

Порядок проведения регистрации:

- Запустите монитор оптического расходомера и подключите его к процессору.
- Укажите регистры, которые должны быть зарегистрированы, во вкладке "Registers".
- Укажите длительность теста.
- "Need Log File" (нужен файл регистрации) позволяет записывать данные в текстовый файл.
- Заполните поле Well ID (имя объекта) и Tester ID (имя пользователя).
- Щелкните на кнопке <Start>.

Примечание: Убедитесь в том, что регистрация данных возможна после включения монитора оптического расходомера. Монитор оптического расходомера автоматически отключает функцию регистрации данных после завершения каждого теста.

9.2. Программирование Процессора ОР при помощи программы HyperTerminal

Программа связи Windows HyperTerminal установлена на большинстве компьютеров, работающих в среде Windows, что делает ее очень удобным средством отладки программы.

Для запуска программы связи выполните следующее:

- Щелкните Start>Programs>Accessories>Communications>Hyperterminal
- Наберите "OFM" в качестве нового имени для подключения, затем щелкните OK
- Прокрутите книзу и выберите порт СОМ, куда подключен кабель последовательной связи оптического расходомера (т.е. СОМ1)
- Заполните информацию по настройке порта, как показано ниже.

COM	1 Properties	<u>?</u> ×
Po	it Settings	
	Bits per second 33400	
	Lota bits: 8	
	Parity: None	
	Stop bits: 1	
	Elow controt None	
	<u>H</u> estore Delauks	
	OK Cancel 🖉	iy -

Рисунок 9-17. Страница свойств COM программы связи Windows HyperTerminal с правильными настройками оптического расходомера.

• Откройте и выполните настройку ASCII, щелкая File>SetUp>Properties>Settings Tab>ASCII setup, затем выполните настройку, как показано ниже.

OFM Properties	<u>? × </u>
Connect Tip Settings	
 Function, errow, and drikeys act as 	
- Blackspace key sends	ASCII Setup
Qui+H C Del C Ctri+H, Space, Ctri+H	ASCII Sending
Emulation:	Send line ends with line feeds
Auto detect Territal Seture.	Echo typed characters locally
Telget terminal ID: ANSI Beckscroll buffer lines: 500	Line delay: 0 miliseconds.
Bay sound when connecting or disconnecting	ASOI Receiving
jnput Translation ASCII Setup	Image: Image in the second
OK Can	cel OK Cancel

Рисунок 9-18. Настройка ASCII, позволяющая отображать набранные команды в программе связи HyperTerminal.

• Щелкните Call>Call для подключения, если подключения все еще нет.

- Для активации связи наберите "cli0".
- Для установления временной паузы в связи наберите "cli1".

Для получения информации о других имеющихся командах, которые могут быть использованы в программе связи, см. Раздел 13.4 Перечень встроенных команд.

9.3. Сохранение / загрузка настроек регистра в память

В случае прекращения питания системные настройки и калибровочная таблица могут быть сохранены в постоянном запоминающем устройстве. Для сохранения настроек в текстовом файле используйте команду "get info" (получить информацию).

Сохранение системных настроек в памяти

Системные настройки могут быть сохранены в собственной памяти оптического расходомера. Для сохранения настроек:

• Наберите "wd 67 255" <enter>

Загрузка системных настроек из памяти

Системные настройки могут быть загружены из памяти. Для загрузки предыдущих настроек:

• Наберите "wd 67 3" <enter>

Сохранение калибрования в памяти

Калибровочная таблица может быть сохранена в памяти. Для сохранения текущей калибровочной таблицы:

• Наберите "wd 68 255" <enter>

Загрузка калибровочной таблицы из памяти

Калибровочная таблица может быть загружена из памяти. Для загрузки текущей калибровочной таблицы:

• Наберите "wd 68 3" <enter>

9.4. Загрузка параметров системной настройки

Вся информация о системных настройках может быть сохранена в текстовом файле для будущего обращения к ней путем набора перечисленных команд в программе связи. Нижеперечисленный список команд должен применяться для восстановления настроек в случае потери данных или в случае необходимости проведения апгрейда встроенного программного обеспечения.

Настройка программы связи для получения данных

- Запустите программу связи и подключите к процессору оптического расходомера.
- Щелкните на Transfer>Capture Text
 - о Позволяет принимать данные на экране, которые появляются в окне программы связи
- Укажите местоположение и наименование текстового файла.

Сохранение системных настроек в текстовом файле

Общее состояние системных настроек может быть сохранено в текстовом файле для поиска и устранения неисправностей или для целей учета. До того, как перейти к последующим действиям, настройте программу связи для приема данных (см. Настройку программы связи для приема данных).

- Наберите "get info <enter>"
 - о Возвращает адрес регистра и соответствующее значение.
- Наберите "get table <enter>"
 - о Возвращает калибровочную таблицу.
- Наберите "get ver <enter>"
 - о Возвращает версию встроенного программного обеспечения.

9.5. Перечень встроенных команд ПОР

Таблица 9-8. Перечень встроенных команд.

Команда /	Описание	Пример
синтаксис		
Чтение/запись		
регистра		
wd <register> <value></value></register>	Записывать данные — записывает данные в указанный адрес регистра. Для прочтения данных используйте команду rd . Регистр = адрес регистра без цифры 4	Записать "1" в регистр 40148 Команда: wd 48 1 <enter> Отчеты:</enter>
rd <register></register>	Чтение данных — считывается значение регистра.	Прочитать Автоматический переключатель регистр 40048 Команда: rd 48 <enter> Отчеты: RD48 13</enter>
get info	Получить информацию – регистры отчетов и значения. Полезно для сохранения текущих настроек в текстовом файле с использованием программы связи.	Команда: get info <enter></enter>
get ver	Чтение версии встроенного программного обеспечения – версии отчетов по встроенному программному обеспечению.	Команда: get ver <enter></enter>
get table	Чтение калибровочной таблицы – отчеты по загруженной сейчас версии встроенного программного обеспечения.	Команда: get table
get data	Скачивание данных, сохраненных во внутренней памяти. Убедитесь в том. что программа связи используется для сохранения данных в текстовом файле.	
cli0	Возобновить RS-232 получения исходящих сигналов.	
cIM	Приостановить RS-232 получения исходящих сигналов.	
wd32 1	Starts internal data logging	
Режим испытания / диагностики		

test0	Выйти из тестового режима.	Команда: test0
test1	Увеличивает все исходящие сигналы на 0,67 м/с.	Команда: test1
test2	Устанавливает исходящие сигналы на максимум	Команда: test2
test3	Устанавливает исходящие сигналы на значения, указанные в {40084}.	Команда: test3
test4	Временная таблица исходящих сигналов - временная таблица исходящих сигналов для каждого интервала отбора проб (только диагностика Photon Contro)	Команда: test4
test5	Гистограмма — гистограмма исходящих сигналов для каждого интервала отбора проб (только диагностика Photon)	Команда: test5
test6	Устанавливает паузу в исходящих сигналах 4- 20мА	Команда: test6
test7	Переходные помехи — для внедрения в будущем.	Команда: test7
test8	Распределение сигнала - для внедрения в будущем.	Команда: test8

10. Установка расходомера Focus Probe

Расходомер Focus Probe состоит из следующих отдельных частей, которые необходимо установить:

- зонда с оптической измерительной головкой;
- процессора оптического расходомера;
- блока питания нагревателя оптики (опция)

Вначале необходимо определиться с выбором места установки зонда. Процессор и блок питания желательно устанавливать рядом с зондом. Стандартная длина оптоволоконного кабеля, соединяющего процессор с зондом – 5 м. Стандартная длина электрического кабеля, соединяющего блок питания с зондом - 3 м.

10.1. Установка зонда расходомера Focus Probe

Установка зонда производится в 2 этапа. Сначала устанавливается арматура зонда. Затем вставляется зонд в подготовленную арматуру.

10.1.1. Установка арматуры зонда

Приводимая ниже инструкция предназначена для установки арматуры, необходимой для вставки в трубу зонда Focus Probe. На Рисунок 10-1 показаны компоненты установки и его можно использовать, как сборочный чертеж при монтаже арматуры.

Focus Probe нельзя устанавливать в вертикальном положении, иначе весьма вероятны загрязнение и осаждение влаги на оптике. Устанавливая арматуру на горизонтальном участке трубы, необходимо ее располагать так, чтобы зонд вставлялся в позицию «З часа». (см. Рис.6.8) Установка зонда в горизонтальном положении

минимизирует необходимость чистки окошка. Убедитесь, что в районе установки арматуры достаточно места для вставки и извлечения зонда.

Процедура установки арматуры зонда

- Выберите место на трубе, где бы Вы хотели установить зонд расходомера Focus
 ^{тм}
 Probe.
- Установите бобышку с 1" нормальной трубной резьбой (НТР).
- При помощи подходящего герметика вкрутите ниппель 1" на ¾" в бобышку и затяните вручную при помощи гаечного ключа (ручная затяжка + Макс. один поворот).
- Возьмите шаровой кран таким образом, чтобы его установочные отверстия и рычаг указывали направление от трубы, и при помощи подходящего герметика вверните ¾" шаровой кран на ниппель и затяните вручную при помощи гаечного ключа (ручная затяжка + Макс. один поворот).
- Установите рычаг шарового крана в положение «закрыто». (Перпендикулярно к крану, как показано на рисунке)
- Наденьте кольцо предохранительной цепи на резьбовой конец **сальниковой** коробки.
- При помощи подходящего герметика вкрутите сальниковую коробку с НТР ¾" в шаровой кран и затяните вручную при помощи гаечного ключа (ручная затяжка + Макс. один поворот).

См. раздел по установке зонда расходомера.

Рисунок 10-1 Установите арматуру, как указано на схеме

Рисунок 10-2: Опциональный разъем нагревателя

тм

Установка арматуры Focus Probe на трубу «холодной врезкой»

Перед началом установки арматуры убедитесь, что все материалы и инструменты есть в наличии. Дрель для холодной врезки приобретается покупателем самостоятельно и используется в соответствии с инструкциями производителя.

Процедура установки арматуры на трубу

- Выберите место на трубе, где бы Вы хотели установить Focus Probe.
- Установите бобышку с 1" нормальной трубной резьбой (НТР).
- При помощи подходящего герметика вкрутите **ниппель 1" на 1"** в бобышку и затяните вручную при помощи гаечного ключа (ручная затяжка + Макс. один поворот).
- Нанесите подходящий трубный герметик на 1" резьбовое соединение ниппеля и шарового крана. Сориентируйте шаровой кран таким образом, чтобы его установочные отверстия и рычаг указывали направление от трубы, и вверните 1" шаровой кран на ниппель и затяните вручную при помощи гаечного ключа (ручная затяжка + Макс. один поворот).

Рисунок 10-3: Установка арматуры «холодной врезкой»

- Закройте шаровой кран (рычаг перпендикулярно корпусу крана).
- Просверлите в трубе отверстие 7/8", использую инструкцию производителя дрели для холодной врезки.
- Просверлив отверстие, необходимо установить опорную гильзу внутри ниппеля 1"/1". Это можно сделать с использованием поставляемого Photon Control установочного штифта.
- Введите приспособление для холодной врезки в сальниковую коробку. Конец приспособления, на котором есть установочный штифт, должен выступать с

резьбовой стороны сальниковой коробки.

Рисунок 10-4: Установка опорной гильзы

- Наденьте пластиковую опорную гильзу на установочный штифт, зацепив паз гильзы установочным штифтом. Правильное положение гильзы - резьбовой частью направлением к трубе, как показано Рисунок 10-4.
- Нанесите герметик на резьбовую часть сальниковой коробки. Вкрутите сальниковую коробку в **шаровой кран** и затяните при помощи гаечного ключа.
- Осторожно откройте шаровой кран (поверните рычаг вдоль крана), отслеживая возможные утечки. Если обнаружите утечку, вынимайте приспособление для холодной врезки и закройте кран. Примечание: Холодную врезку нельзя применять, если давление среды более 2,1 кгс/см².
- Если утечек не обнаружено, введите установочный штифт через кран вплоть до внутренней резьбы ниппеля 1"/1". Осторожно вращая штифт по часовой стрелке, вкрутите опорную гильзу, но не очень сильно до упора в ниппель 1" / 1".
- Вытаскивайте установочный штифт обратно, пока он не окажется в сальниковой коробке.
- Закройте шаровой кран.
- Открутите сальниковую коробку от шарового крана для выемки установочного штифта.
- Наденьте кольцо предохранительной цепи на резьбовой конец сальниковой коробки.(см. рис.1 для установки предохранительной цепи).
- Закрутите обратно сальниковую коробку в шаровой кран, не забывая использовать герметик, и затяните вручную при помощи гаечного ключа (ручная затяжка + Макс. один поворот).

10.1.2. Вставка зонда

В этом разделе приведена инструкция по установке зонда Focus Probe и предохранительного оборудования для его удержания. На рисунках с 6.4 по 6.6 приведена визуальная информация и расчеты глубины установки зонда для труб диаметром 100, 150 мм и более.

Во время установки никто не должен находиться на одной линии с зондом, поскольку труба находится под давлением и есть вероятность выброса зонда из трубы, что может принести к травмам.

Возможны небольшие утечки во время установки. Необходимо предпринять соответствующие меры безопасности. Устанавливайте зонд только при минимальном давлении в трубе, а лучше, если линия и вовсе перекрыта.

Примечание:

Максимальная сила, действующая на зонд (кгс) = Давление в трубе (кгс/см²) x 0,2

Примеры:

2 кгс/см² x 0,2 = 0,4 кгс 7 кгс/см² x 0,2 = 1,4 кгс

Примечание:

Ограничения по рабочему давлению и температуре:

Макс. давление: 7 кгс/см² Рабочая температура: от -40°С до +150°С

Процедура установки скобы предохранительной цепи

- Отсоедините Quick Link разъем и снимите Предохранительную цепь со Скобы предохранительной цепи.
- Наденьте скобу предохранительной цепи на зонд таким образом, чтобы петля смотрела на противоположный от оптоволоконного разъема конец зонда.
- Наденьте фиксатор на зонд и прижмите им скобу предохранительной цепи, так, чтобы она была неподвижной относительно корпуса зонда.
- Затяните винт на фиксаторе при помощи шестигранного ключа 3/16".

Рисунок 10-5: Установка скобы предохранительной цепи и фиксатора

Расчет глубины внедрения для труб диаметром 150мм и более

Перед установкой зонда необходимо рассчитать и обозначить правильную глубину внедрения. Точка измерения на Focus TM Probe располагается на расстоянии 42мм от конца зонда. Для получения точных измерений для труб диаметром 150 мм и более необходимо располагать точку измерения на ¼ радиуса от внутренней стенки трубы. Расчет производится нижеследующим образом, руководствуясь Рисунок 10-6.

- Измерьте и запишите расстояния А, В, С и D.
- Вычислите и запишите расстояние E = A+B+C+D. (Сохраните эти записи, поскольку они могут понадобиться в будущем при реинсталляции зонда)
- Отметьте на зонде расстояние Е от конца, как показано на рисунке.

Рисунок 10-6: Расчет глубины внедрения зонда для труб диаметром 150мм и более

Примечание:

Внутренний диаметр и толщину трубы можно определить в Приложении А.

Примечание:

Допуск на глубину внедрения: 0,5% от номинального диаметра трубы

Расчет глубины внедрения для труб диаметром 100мм

Перед установкой зонда необходимо рассчитать и обозначить правильную глубину внедрения. Точка измерения на Focus TM Probe располагается на расстоянии 42мм от конца зонда. Для получения точных измерений для труб диаметром 100мм необходимо располагать точку измерения в центре трубы. Расчет производится нижеследующим образом, руководствуясь Рисунок 10-7.

- Измерьте и запишите расстояния А, В, С и D.
- Вычислите и запишите расстояние E = A+B+C+D. (Сохраните эти записи, поскольку они могут понадобиться в будущем при реинсталляции зонда.)
- Отметьте на зонде расстояние Е от конца, как показано на рисунке.

Рисунок 10-7: Расчет глубины внедрения зонда для труб диаметром 100мм и менее

Примечание:

Внутренний диаметр и толщину трубы можно определить в Приложении А.

Примечание:

Допуск на глубину внедрения: 0,5% от номинального диаметра трубы

Процедура установки зонда Focus [™] Probe

- Убедитесь, что шаровой кран закрыт (рычаг должен быть перпендикулярен корпусу крана, как показано на рис.)
- Ослабьте гайку сальниковой коробки, чтобы зонд мог двигаться внутри.
- Продвигайте осторожно зонд вперед через сальниковую коробку, пока он не упрется в закрытый шаровой кран. (Кольцо в сальниковой коробке будет герметизировать корпус зонда)
- Присоедините соединитель и предохранительную цепь к скобе предохранительной цепи.
- Отрегулируйте длину предохранительной цепи таким образом, чтобы она стала натянутой.
- Расположите зондовое окошко параллельно направлению потока, как показано на рис. 6.8.
- Откройте шаровой кран (рычаг параллельно корпусу крана).
- Убедитесь, что зонд расположен так, что измерительное отверстие параллельно направлению потока в трубе. Используйте плоскую поверхность оптоволоконного разъема в качестве визуальной базы и как только ориентация установлена, больше НЕ ПОЗВОЛЯЙТЕ зонду вращаться.
- Продвигайте зонд в трубу на четверть радиуса, согласно процедуре для ¼ радиуса, или до центра трубы, согласно соответствующей процедуре.

ОПАСНО

НЕ УДАЛЯЙТЕ ЗАГЛУШКУ, ПОКА ШАРОВОЙ КРАН ОТКРЫТ

Рисунок 10-8: Внедрение зонда в арматуру трубы

- Ниппель очистки может быть добавлен по желанию заказчика. Ниппель позволит безопасно удалить газы, оставшиеся между шаровым краном и сальниковой коробкой во время удаления.
- При помощи торцевого ключа затяните гайку сальниковой коробки с усилием 75-80 кгс*м для обеспечения надежного удержания модуля зонда.

Рисунок 10-10: Ориентация зонда по направлению потока

10.2. Установка процессора оптического расходомера

Ниже приведена последовательность установки процессора оптического расходомера во взрывозащищенном корпусе.

Крепежный кронштейн только для 50 мм трубы

Свяжитесь с ближайшим продавцом изделий Photon Control для приобретения подставок для установки контроллера расходомера на трубах другого диаметра.

Рисунок 10-11- Элементы для крепления расходомера на трубе

Порт для подсоединения оптического кабеля на Рисунок 10-11 не показан

Процедура монтажа:

 Определите, как будет устанавливаться корпус процессора относительно трубы:
 а) параллельно трубе;

б) на одной линии с трубой.

Отверстие в трубе определяет ее расположение

Поверните кронштейн для обеспечения требуемого положения

2. Прикрепите крепежный кронштейн к нижней части корпуса контроллера расходомера.

3. Прикрепите кронштейн U-образными болтами к трубе.

Рисунок 10-12- Крепление процессора на трубе

10.3. Установка блока питания нагревателя оптики

Процедура установки блока нагревателя оптики во взрывозащищенном корпусе аналогична процедуре установки процессора (см. 10.2).

10.4. Присоединение кабелей

Ознакомьтесь с компонентами и характеристиками контроллера с целью использования его функций в полном объёме. Дисплей и сумматор – дополнительные опции процессора.

Во избежание искрения полностью **отключите питание перед установкой** электрических компонентов!

Лазерное излучение! Устройство имеет два лазера – ИЗБЕГАЙТЕ ВОЗДЕЙСТВИЯ НА ГЛАЗА ПРЯМОГО/ОТРАЖЕННОГО ЛАЗЕРНОГО ЛУЧА

Порты входа и разъёмы

Рисунок 10-13 Процессор во взрывобезопасном корпусе

Таолица 10-1		
Точки соединения электрических	Назначение	Рису-
и оптических кабелей		нок
Последовательный порт 1	Порт конфигурации блока дисплея/	Рисунок
последовательный порт т	сумматора	10-13
	Порт конфигурации оптического	Рисунок
последовательный порт 2	расходомера	9-2
Переключатель ПЗУ	Выводы закорочены для включения	Рисунок
программы	режима программирования ПЗУ	9-2
Rappon 1	Канал 1 подсветки оптического датчика	Рисунок
Лазер 1		9-2
Record 2	Канал 2 подсветки оптического датчика	Рисунок
Лазер 2		9-2
Датчик 1	Канал 1 регистрации частиц	Рисунок

		9-2
Датчик 2	Канал 2 регистрации частиц	Рисунок 9-2
Внутренняя/внешняя кнопка просмотра	Кнопка просмотра дисплея	Рисунок 10-13
Многоволоконный оптический соединитель	Оптический соединитель для многоволоконного удлинительного кабеля	Рисунок 10-13

10.5. Электрические соединения процессора

Последовательный порт 1 – порт конфигурации блока дисплея/сумматора Последовательный порт 2 – порт конфигурации оптического расходомера Переключатель ПЗУ программы – выводы закорочены для включения режима программирования ПЗУ

Лазер 1 – канал 1 подсветки оптического датчика

Лазер 2 – канал 2 подсветки оптического датчика

Датчик 1 – канал 1 регистрации частиц

Датчик 2 – канал 2 регистрации частиц

№ контакта		МАРКИРОВКА			
1	+	Вход +10-30 В постоянного тока			
2	-				
3	+	RS-485A/RS-232TX			
4	-	RS-485B/RS-232TX			
5		Свободный			
6	+	4-20мА выход скорости/расхода			
7	-				
8	+	4-20мА вход температуры			
9	-				
10	+	4-20мА вход давления			
11	-				
12		Свободный			
13	+	Выход частотного сигнала с открытым коллектором для			
14	-	передачи информации по скорости/расходу			
15	+	Выход аварийного сигнала с открытым коллектором			
16	-				

ПОДАЧА ПИТАНИЯ

Рисунок 10-15: Маркировка контактов

Диапазон подачи питания от +10 В до +30 В постоянного тока. Величина потребляемого тока - до 200мА при напряжении 24 В постоянного тока.

Рисунок 10-16. Электрическая схема подачи питания

ВХОДЫ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ – 4-20 мА

На 4-20мА входах температуры и давления используются передаточные реостаты 240 ом для преобразования данных давления и датчика. Для обеспечения нормальной работы убедитесь, что сила тока на датчиках не превышает 25мА.

Разрешение: 10-бит АЦП

ВЫХОД РАСХОДА/СКОРОСТИ – 4-20мА

Аналоговый выход расхода/скорости является пассивным (не запитываемым), поэтому необходим внешний источник питания. Подходящее питание – от +10В до +30В постоянного тока. Заводские установки: 4мА = 0,01 м/сек 20мА = 100 м/сек

Нулевую отметку и интервал можно изменить с помощью программы управления оптическим расходомером.

Сопротивление линии Rline должна поддерживаться на минимальном уровне (идеально – 0 ом). Максимально допустимое сопротивление линии можно рассчитать следующим образом: *Rline = (Vin – 10V)*

25 mA

Разрешение: 12-бит АЦП

Примечание:

- 4-20мА аналоговый выход сконфигурирован для скорости по умолчанию.
- См. руководство пользователя программы конфигурации для проведения конфигурации этого выхода.

Рисунок 10-18: Электрическая схема аналогового входа (4-20мА).

ВЫХОД АВАРИЙНОГО СИГНАЛА – С ОТКРЫТЫМ КОЛЛЕКТОРОМ

Выход аварийного сигнала конфигурируется как выход с открытым коллектором. Для обеспечения аварийного сигнала необходима подача питания с нагрузочным резистором (Rp).

См. характеристики входа аварийного сигнала для определения необходимого тока плотного прижатия.

10.6. Присоединение оптических кабелей

Процедуры присоединения к интерфейсным портам

Процедуры присоединения и отсоединения оптоволоконного кабеля должны проводиться при отключенном питании!

Оптоволоконные соединения Головки Оптического Расходомера (ГОР) и Процессора Оптического Расходомера (ПОР) – важнейшая составляющая правильного функционирования системы Оптического Расходомера. Для обеспечения безопасности персонала и надежной работы оптической системы необходимо соблюдать меры безопасности при работе с лазером, выполнять процедуры обслуживания и чистки, соблюдать предосторожности по отношению к оптоволоконным разъемам.

РАБОТА – Технические характеристики лазера

Тип источника-		Лазерный диод (AGaInP)
Длина волны-		658 нм ± 7 нм
Максимальн	ная выходная	
мощность-		11 мВ @ 25ºС
Дивергенция	я-	61,6 мрад (3,5º)
Длительность импульса-		Постоянная
Все модели	ОР удовлетвор	ряют требованиям лазерной безопасност
США	ANSI Z130	6.1
США	ANSI Z130 CDRH (FD	6.1 A) 21 CRF 1040.10 и .11
США Канада	ANSI Z130 CDRH (FD CAN/CSA	6.1 0A) 21 CRF 1040.10 и .11 -E60825-1:03

Присоединение Оптоволоконного кабеля

Photon Control предлагает различные длины оптоволоконных интерфейсных кабелей, разработанных для обеспечения оптического соединения электроники Процессора оптического расходомера и Оптической головки расходомера. Эти интерфейсные кабели вместе с оптическими разъемами TFOLTM обеспечивают два передающих (TX) и два принимающих канала (RX), составляя всего 4 оптических канала. Процессор оптического расходомера и Оптическая головка расходомера снабжены ответными

оптическими TFOLTM разъемами (возможно исполнение процессора с уже закрепленным в нем оптоволоконным кабелем без использования TFOLTM разъема).

Разъем TFOL[™] (Тактичное Оптоволоконное Соединение) обеспечивают надежное и безопасное соединение в полевых условиях. Разъем герметично защищен от воздействия окружающей среды, а алюминиевый корпус имеет черненое анодированное покрытие, что создает чрезвычайно крепкую защиту и продлевает жизнь разъема. Разъем TFOL[™] использует стандартные 2,5 мм ферулы и направляющие рукава, которые обеспечивают малые оптические потери.

Последовательность соединения

Перед подключением любого оптического соединения убедитесь, что питание к ПОР выключено. Это предотвратит облучение лазерным излучением, присутствующего на выходе ПОР или оптического интерфейсного кабеля.

- 1) Каждый разъем поставляется с пылезащитными колпачками, открутите пылезащитный колпачок.
- 2) Визуально проверьте чистоту каждого разъема.
- Если требуется легкая чистка, при помощи баллончика со сжатым воздухом выдуйте любую грязь или пыль из четырех гнездовых отверстий или на ферулах оптического разъема.
- 4) Для более тщательной очистки возможно придется воспользоваться 2,5 мм оптоволоконными Q-палочками для индивидуальной чистки гнездовых отверстий или ферул. Они поставляются с оборудованием и включены в чистящий набор Photon Control № AKT-0014A.
- 5) Соедините разъемы, отодвинув кожух кабельного разъема, и слегка толкайте, поворачивая его. Во время вращения направляющая разъема будет давать дополнительное соединительное усилие между гнездом и вилкой.
- 6) Вращайте до защелкивания и больше затем не затягивайте!
- 7) Прикрепите Лазерный хомут безопасности, как показано на Рисунок 10-21. Закрутите головку винта, но не до конца, позволяя хомуту поворачиваться, и натяните провод. Это защитит от не санкционированного рассоединения и потребует применения специального инструмента. Как только система будет проверена и признана работоспособной, только квалифицированный персонал может рассоединить систему!

Рисунок 10-21: Присоединение оптоволоконного разъема TFOL (ПОР и ГОР)

10.7. Присоединение кабеля нагревателя (опция)

Головки Оптического Расходомера (ГОР) могут поставляться с установленной на заводе нагревательной системой. Эта опция особенно нужна для применений, где может образовываться конденсат на оптическом окошке. Головки Оптического Расходомера с опцией нагревателя имеют в комплекте электрический разъем, как показано ниже. Питание осуществляется через источник питания Оптического Расходомера (ИПОР). Этот компонент – искробезопасный источник питания, специально разработанный и утвержденный для использования с нагреваемой Головкой Оптического Расходомера (ГОР). Соединяет ИПОР и ГОР стандартный 3 м электрический кабель. Соединение осуществляется простым соединением ответных частей разъема с легким прижимным усилием и вращением. Ответные части имеют ключи совпадения и это позволит придать дополнительное соединительное усилие при совпадении ключей. Вращайте до защелкивания. Эту последовательность необходимо провести для обоих концов интерфейсного электрического кабеля.

10.7.1. Подключение питания нагревателя (опция)

Блок питания нагревателя состоит из конвертора постоянного тока и искрозащитного барьера (Рисунок 10-22).

Рисунок 10-22 : Блок питания нагревателя оптики зонда

Из взрывобезопасной зоны в блок питания подается питание 12 – 24 В постоянного тока через герметичный Ех кабельный ввод на клеммы 1 и 2 (соответственно +V и –V) конвертора постоянного тока (Рисунок 10-23).

Рисунок 10-23: Электрическая схема соединений блока питания нагревателя

11. Выемка зонда Focus Probe

Выемка зонда Головки Оптического Расходомера (ГОР) производится в обратном порядке его установки, за исключением того, что трубопровод должен быть предварительно перекрыт и очищен. Photon Control не несет ответственности за возможный ущерб при несоблюдении указанных процедур.

Ошибки, связанные с не перекрытием трубопровода или с не соблюдением необходимых процедур могут привести к гибели персонала и/или оборудования. Эти действия может выполнять только обученный и квалифицированный персонал. Питание Процессора Оптического Расходомера (ПОР) должно быть отключено. Убедитесь в том, что отключено питание, замеряв напряжение на клеммах +Vin и -Vin ПОР. Если система снабжена опцией подогрева окна, необходимо также отключить ее питание и убедиться в ее отключении. Проверку можно осуществить, измерив напряжение на клеммах +Vin и –Vin и –Vin источника питания нагревателя АОР.

11.1. Последовательность рассоединения оптоволоконного интерфейсного кабеля.

- 1) Перед тем, как отсоединить оптоволоконный кабель, убедитесь, что питание ПОР выключено. Это необходимо для лазерной безопасности.
- 2) Проверьте на загрязненность пылезащитные накручивающиеся колпачки, при необходимости очистите их.
- 3) Откручивайте накидные гайки оптоволоконного разъема, одновременно слегка тяните за заднюю часть разъема.
- 4) Даже если питание системы отключено **НЕ СМОТРИТЕ** в оптические разъемы или оптоволоконный кабель.
- 5) Закройте оптоволоконные разъемы и концы оптоволоконного кабеля пылезащитными колпачками.

11.2. Последовательность отсоединения интерфейсного кабеля нагревателя.

- Перед тем, как отсоединить нагреватель, убедитесь, что питание АОР выключено. Это необходимо для взрывобезопасности.
- 2) Проверьте на загрязненность пылезащитные колпачки, при необходимости очистите их.
- Возьмите переднюю часть кабельного разъема и поверните удерживающее кольцо влево на ¼ оборота. Это разблокирует разъем и позволит его рассоединить, слегка потянув их.
- 4) Закройте разъемы и концы интерфейсного кабеля пылезащитными колпачками.

11.3. Извлечение зонда.

Во время извлечения зонда никто и никакая часть тела не должны находится на одной линии с зондом. Труба под давлением может сильно вытолкнуть зонд, поразив находящегося с зондом на одной на линии.

Для избежание выброса зонда, убедитесь, что предохранительная цепь прикреплена.

Возможны небольшие утечки в процессе изымания зонда. Примите соответствующие меры безопасности.

Для предотвращения сильного воздействия на зонд, извлекайте его из трубы только при минимальном давлении или при перекрытой трубе.

- 1) Отметьте на зонде то место, где он выходит из сальниковой коробки как репер для извлечения.
- 2) Держите зонд, чтобы его не выбросило, ослабьте гайку сальниковой коробки настолько, только чтобы позволить зонду начать перемещаться.
- 3) Потихоньку извлекайте зонд из трубы до тех пор, пока первый паз на зонде не окажется на расстоянии 50 60 мм после сальниковой коробки. В случае, если длина страховочной цепи окажется недостаточной, необходимо будет переставить фиксатор. НЕ ОСЛАБЛЯЙТЕ ФИКСАТОР, ПОКА СНОВА НЕ ЗАТЯНИТЕ САЛЬНИКОВУЮ КОРОБКУ! Ослабьте фиксатор и переместите его в позицию, которая позволит извлечь зонд до уровня, описанного выше, закрепите фиксатор, ослабьте сальниковую коробку и продолжайте извлекать зонд о тех пор, пока первый паз на зонде не окажется на расстоянии 50 60 мм после сальниковой коробки, это положение будет поддерживать удержание зонда в сальниковой коробке и даст возможность закрыть шаровой кран. НЕ ИЗВЛЕКАЙТЕ ЗОНД ПОЛНОСТЬЮ!
- 4) Закройте шаровой кран.
- 5) Выпустите захваченный газ при помощи спускного ниппеля. *
- 6) Ослабьте сальниковую коробку так, чтобы зонд ходил в ней свободно.
- 7) Засуньте осторожно зонд обратно по направлению в трубе, пока он не упрется в закрытый кран.
- 8) Отсоедините предохранительную цепь от скобы.
- 9) Полностью извлеките зонд из установки.

* Этот шаг необходим только, если установлен спускной ниппель.

!! УБЕДИТЕСЬ, ЧТО ПОСЛЕ СБОРКИ РАЗМЕТОЧНАЯ РИСКА УСТАНАВЛИВАЕТСЯ В ОДНУ ЛИНИЮ!!

12. Эксплуатация расходомера

Эксплуатация расходомера должна осуществляться таким образом, чтобы соблюдались все требования и параметры, указанные в настоящем руководстве по эксплуатации.

13. Техническое обслуживание

13.1. Общие указания

Техническое обслуживание расходомера заключается, в основном, в проверке технического состояния и периодической поверке.

К техническому обслуживанию расходомера должны допускаться лица, изучившие настоящее руководство по эксплуатации и прошедшие соответствующий инструктаж.

13.2. Порядок технического обслуживания

13.2.1. При эксплуатации расходомер должен подвергаться ежемесячному внешнему осмотру и периодическому профилактическому осмотру.

13.2.2. При внешнем осмотре необходимо проверить:

- отсутствие обрывов или повреждений изоляции электрического и оптоволоконного кабелей;
- прочность крепления составных частей расходомера;

- наличие маркировки и предупредительных надписей на составных частях расходомера (окраска знаков взрывозащиты и предупредительной надписи должна быть контрастной фону окраски корпуса и сохраняться в течение всего срока службы);
- отсутствие подтекания рабочей жидкости в местах установки зонда.
- 13.2.3. Периодичность профилактических осмотров устанавливается в зависимости от производственных условий, но не реже одного раза в
 - месяц.

В процессе профилактических осмотров должны быть выполнены следующие мероприятия:

- проверка надежности уплотнения подводимого кабеля (он не должен проворачиваться в узле закрепления);
- проверка целостности пайки, крепления и изоляции проводов, монтажа;
- проверка затяжки сальниковой коробки в узле вставки зонда.

13.3. Чистка зонда Focus[™] Probe

1) Проверьте наличие центровочных меток на зонде, как показано на Рисунок 13-1

Рисунок 13-1: Центровочные метки на вставляемых компонентах зонда

- 2) Рассоедините 3 основных компонента расходомера, как показано на Рисунок 13-2, откручивая против часовой стрелки.
- 3) Проверьте О-кольца на наличие трещин и износа, при необходимости замените.
- 4) Проверьте резьбовые поверхности на наличие заусенец и грязи. Перед сборкой снимите заусенцы и очистите поверхности.
- 5) Осторожно продуйте насадную расходную трубку сжатым воздухом.
- 6) Протяните через насадную расходную трубку мягкую ткань или Q-палочки для удаления оставшегося мусора. Еще раз продуйте сжатым воздухом.

Рисунок 13-2: Разберите 3 компонента, чтобы получить доступ к оптике для ее чистки

- Проверьте оптические поверхности на загрязненность, как показано на Рисунок 13-3.
- Слегка обдуйте сжатым воздухом оптические поверхности для удаления любого мусора.

Всякий раз при использовании сжатого воздуха или чистящих химикатов одевайте защитные очки

- 9) Протрите загрязненные поверхности чистой неабразивной тканью или салфеткой, желательно салфетками Kimwipes[®] или Chemtronics[®] optic-prep[®], с использованием одного их трех следующих растворов:
 - для большинства случаев рекомендуется изопропиловый спирт
 - при сильном загрязнении используйте ацетон (подходящего товарного сорта) или
 - иммерсионный щелочной очиститель, как например Oakite-61В

При использовании чистящих растворов одевайте перчатки и избегайте попадания в глаза. Испарения чистящих растворов могут быть

огнеопасными и/или вредными, применяйте в хорошо вентилируемых местах.

- 10) Намочите часть ткани выбранным раствором.
- 11) Осторожно удалите загрязнения с оптических поверхностей, как показано на Рисунок 13-3 при помощи ткани или выбранной салфетки.

!! НЕ ЦАРАПАЙТЕ ОПТИЧЕСКИЕ ПОВЕРХНОСТИ !!

12) Проверьте оптические поверхности еще раз, чтобы убедиться в отсутствии на них частиц, грязных пятен или остатков раствора.

Рисунок 13-3: Осторожно очистите оптические поверхности с помощью ткани и Q-палочек

13) Соедините компоненты зонда, убедившись, что короткая часть центрального участка стоит по направлению к концу расходомера, как показано Рисунок 13-2. Наносите известную смазку против зацеплений для резьбы.

13.4. Проверка работоспособности

13.4.1. Проверка юстировки и работы оптической системы

Перед тем как приступить к настройке системы, вначале следует выполнить проверку юстировки и работы оптической системы оптической системы. Этот раздел включает визуальные проверки прохождения излучения лазера в разных компонентах системы, включая оптическое устройство обработки данных расходомера, оптический кабель и зонд.

ОПАСНО! Лазерное излучение

Избегайте прямого воздействия со стороны лазерного луча.

Направляйте лазерный луч на темную неотражающую поверхность.

При подключении соединительного кабеля рекомендуется надевать очки для защиты от лазерного излучения.

ОСТОРОЖНО! Хрупкие компоненты

Если очистка произведена небрежно, можно серьезно повредить оптиковолоконный кабель. До состыковки всегда очищайте оптико-волоконный выход.

Рисунок 13-4. Общий вид оптической системы расходомера

Laser 1	Лазер 1
Laser 2	Лазер 2
Detector	Детектор

Необходимый инструмент / принадлежности:

Комплект Photon Control для очистки оптико-волоконного кабеля (АКТ-0014А)

- Спирт
- Тампоны на стержне
- Тампоны на стержне, пропитанные спиртом
- Темная ткань
- Очки для защиты от лазерного излучения.

Проверка лазерного излучения на выходе оптического устройства обработки данных по расходу (OFP).

Отключить питание OFP.

- 1) Очистить оптические разъемы с использованием безворсовых тампонов на стержне, пропитанных спиртом (например, Kimwipes EX-L)
- 2) Подать питание на ОFP
- 3) Кратковременно направить лазерный луч на темную неотражающую поверхность (например, кусочек темной ткани).
- 4) Проверить наличие двух ярких круглых лазерных пятен.
- 5) Оба пятна должны иметь равную интенсивность.
- 6) Если уровни лазерного излучения не равны, или оно отсутствует, обратитесь к разделу «Поиск и устранение неисправностей».

Рисунок 13-5. Очистите выходные разъемы тампонами на стержне, смоченными спиртом.

Рисунок 13-6. Выходной разъем лазерного излучения OFP. Два пятна одинаковы, имеют форму круга и высокую яркость.

Проверка лазерного излучения на выходном разъеме оптико-волоконного кабеля

- 1) Очистить все выходы оптико-волоконного кабеля с использованием тампонов на стержне, смоченных спиртом.
- 2) Проверить ориентацию ключа разъема оптико-волоконного кабеля, затем вставить его в разъем OFP.
- 3) Разъем следует затягивать только усилием рук.
- 4) Проверить наличие двух круглых ярких лазерных пятен.
- 5) Оба пятна должны иметь равную яркость.
- 6) Если уровни лазерного излучения не равны или оно отсутствует, обратитесь к разделу «Поиск и устранение неисправностей».

Рисунок 13-7. Оптические тампоны на стержне для очистки выходов оптико-волоконного кабеля.

Рисунок 13-8. Очистить все выходы оптико-волоконного кабеля с использованием тампонов на стержне, смоченных спиртом.

Рисунок 13-9. Оба разъема на концах оптического кабеля соединить с головкой оптического расходомера (зонд) и оптическим устройством обработки данных (процессор), и затянуть от руки.

Проверка выходного устройства лазера с головкой оптического потока (без колпака и зеркала)

- 1) Очистить выводы соединителя оптической головки расхода с использованием тампонов, смоченных спиртом.
- 2) Снять колпак и зеркало в сборе.
- Проверить ориентацию ключа разъема оптико-волоконного кабеля, затем вставить его в разъем OFP.
- 4) Разъем должен затягиваться только усилием рук.
- 5) Кратковременно направить лазерный луч на темную неотражающую поверхность (например, кусочек темной ткани).
- 6) Проверить наличие двух ярких четко-сфокусированных лазерных полос.
- 7) Обе лазерные полосы должны иметь равную яркость свечения.
- Если уровни лазерного излучения не равны, или оно отсутствует, обратитесь к разделу «Поиск и устранение неисправностей».

Рисунок 13-10. Часть головки оптического расходомера (зонд) в сборе показана (слева направо) с зеркалом в сборе, колпаком и трубкой. На корпус зонда наносятся юстировочные отметки для правильного совмещения при повторной сборке. Эти детали должны затягиваться только усилием рук.

Рисунок 13-11. Пятна лазерного излучения, выходящего из оптической головки расходомера, со снятым колпаком и зеркалом в сборе.

Проверка выходного устройства лазера с оптического головкой (с колпаком, без зеркала)

- 1) Навернуть колпак в сборе на головку оптического расходомера
- 2) Убедиться, что ориентация колпака правильная.
- Затянуть от руки колпак в сборе на оптической головке до совмещения юстировочных меток.
- 4) Отвернуть зеркало в сборе от колпака.
- 5) Кратковременно направить лазерный луч на темную неотражающую поверхность (например, кусочек темной ткани)

- 6) Проверить наличие одного эллиптического лазерного пятна.
- 7) Лазерные пятна на обоих концах должно быть одинаковыми.

Рисунок 13-12. Лазерные пятна соединяются в одну эллиптическую отметку, когда световое пятно показывается на расстоянии более двух дюймов от колпака. Световое пятно должно быть параллельно расходомерной трубке.

13.5. Техническое освидетельствование

- 13.5.1. Расходомеры подлежат обязательной поверке или калибровке при выпуске из производства или ремонта, а также после истечения срока межповерочного интервала.
- 13.5.2. Периодической поверке подлежат расходомеры, находящиеся в эксплуатации или на хранении.
- 13.5.3. Периодичность поверки устанавливается Федеральным агентством по техническому регулированию и метрологии и составляет один раз в три года.
- 13.5.4. Проверку метрологических параметров расходомеров в эксплуатации производить согласно рекомендации ГСИ «Расходомеры газа оптические FOCUS[™]. Методика поверки».

14. Текущий ремонт

14.1. Общие указания

- 14.1.1. Текущий ремонт расходомера заключается в устранении неисправностей обслуживающим персоналом на месте эксплуатации.
- 14.1.2. К текущему ремонту расходомера должны допускаться лица, изучившие настоящее руководство по эксплуатации и прошедшие соответствующий инструктаж.
- 14.1.3. Ремонт, который может быть осуществлен только в условиях ремонтных органов, производит ООО "ИННОТЕХ» по адресу, указанному на стр.3.

14.2. Возможные неисправности

Возможные неисправности и указания по их устранению приведены в Таблица 14-1.
Таблица 14-1			
Описание отказов	Признаки	Способы устранения	
и повреждений	неисправностей	неисправностей	
 Пятна лазерного излучения не равны или отсутствуют на соединителе оптического расходомера или на соединителе оптического кабеля 	Одно или оба лазерных пятна отсутствуют. Пятна лазерного излучения не равны.	 Очистите совмещающиеся выводы спиртом и протрите их тампоном на стержне или салфетками из безворсовой ткани. Проверьте наличие двух пятен лазерного излучения на разъемах процессора оптического расходомера. Проверьте затяжку соединительных устройств от руки. Проверьте ток лазера с использованием монитора оптического расходомера, убедитесь в том, что ток находится между 85мА и 100мА. 	
2) Пятна лазерного излучения не равны / отсутствуют на головке оптического расходомера (зонд оптического расходомера)	Одно или оба лазерных пятна отсутствуют. Пятна лазерного излучения не равны.	 Снимите колпаки зеркало в сборе, затем очистите все оптические поверхности с использованием тампонов на стержне, смоченных спиртом и изготовленных из безворсовой ткани. Осмотрите на наличие загрязнений на трубке расходомера, затем очистите с использованием тампонов на стержне. Очистите совмещающиеся выводы спиртом и протрите их тампоном на стержне или салфетками из безворсовой ткани. Проверьте наличие двух лазерных отметок на разъемах оптического кабеля. Проверьте затяжку соединительных устройств от руки. Проверьте ток лазера с использованием монитора оптического расходомера, убедитесь в том, что ток находится между 85мА и 100мА. 	
3) Связь RS-232 через порт конфигурирования не работает	Оптический расходомер не реагирует на команды в программе связи и на мониторе оптического расходомера	 Проверьте соединения кабеля по всей его длине. Проверьте правильность параметров связи: 38400 бодов 8N1, контроль расхода отсутствует. Проверьте правильность используемого порта COM. Проверьте, что другое программное обеспечение не использует порты COM 	
 Связь RS-485 с монитором оптического расходомера не работает 	Монитор оптического расходомера не реагирует на команды из монитора	 Проверьте работоспособность конвертера от RS-485 к RS-232. Проверьте выбор протокола ModBus RTU на мониторе оптического расходомера. Проверьте соединение проводов в RS-485. Проверьте, что другое программное обеспечение не использует порты COM 	

	Значения,	
5) Аналоговый	показываемые на	• Проверьте настройку смещения нуля сигнала 4-20мА
исходящий сигнал	дисплее,	(4мА) и смещения градиента (20мА).
4-20мА показывает	отличаются от	• Проверьте правильность значений минимального и
неправильное	значений на	максимального аналогового исходящего сигнала
значение на	мониторе	оптического расходомера на соответствие настройки
дисплее	оптического	дисплея.
	расходомера	
	Монитор	
	оптического	
6) Аналоговые	расходомера всегда	
сигналы (частотные	показывает сигнал	проверые, что режим (test2) все еще активен. для
или 4-20мА) всегда	скорости 20мА или	удаления моделирования максимального расхода
по максимуму	максимальный	насерите команду тезго.
	частотный	
	исходящий	
	Входящее значение	
	температуры,	• Проверьте настройку смешения нуля сигнала 4-20мА
7) Входящее	показанное на	(4мА) и смещения градиента (20мА).
	мониторе	• Проверьте правильность значений минимального и
температуре	оптического	максимального входящего сигнала по температуре на
неправильно	расходомера,	соответствие калиброванию датчика температуры.
- F	отличается от	• Проверьте соответствие единиц измерения.
	дисплея датчика	
	температуры	
8) Значение входящего сигнала по давлению неправильно	Значение	• Проверьте настройку смещения нуля сигнала 4-20мА
	входящего сигнала	(4мА) и смещения градиента (20мА).
	по давлению,	• Проверьте правильность значении минимального и
	показанное на	максимального входящего сигнала по давлению
	мониторе	соответствие калиорованию датчика давления.
	оптического	• значение, показанное на процессоре оптического
	расходомера,	расходомера, всегда аосолютное. Поэтому, если
	отличается от	используется датчик, настроенный на приоорное
	значения на	значение давления, то показание = показание
	дисплее датчика давления	0Пического расходомера (40015) – атмосферное
		• проверые соответствие единиц измерения.

9) Частотное исходящее устройство не работает	Частотное выходное устройство всегда показывает 0 Гц.	 Проверьте наличие нагрузочного резистора. Частотное выходное устройство конфигурировано как Open-Collector (открыто – коллектор). Для своей работы ему нужен нагрузочный резистор. Проверьте частоту на выводах процессора оптического расходомера с использованием прибора измерения частоты. Проверьте работоспособность нагрузочного резистора. Проверьте, что частотный выходной сигнал не превышает максимальное значение спецификации счетчика по частоте. Проверьте, что пиковые напряжения превышают порог счетчика. Некоторые пороговые значения счетчика равны примерно 3В. Если пиковое значение частотного выходного сигнала не более 3В, счетчик не будет запушен в работу.
работает	показывает О Гц.	счетчика по частоте.
		• Проверьте, что пиковые напряжения превышают
		порог счетчика. Некоторые пороговые значения
		счетчика равны примерно ЗВ. Если пиковое значение
		частотного выходного сигнала не более 3В, счетчик не
		будет запущен в работу.
		• Проверьте тип входящего сигнала счетчика.
		Некоторые счетчики запускаются в работу, когда
		сигнал достигает всего лишь ОВ.

		-
10) Показания расхода всегда нулевые	Показания скорости всегда нулевые	 ! Осторожно: Не смотрите прямо в источник лазерного излучения – в противном случае может произойти серьезное повреждение глаза. Для проверки сигналов лазера направьте лазерное излучение на неотражающую поверхность, например на ткань или руку. ! Важно: Всегда очищайте оптические поверхности, включая зеркала вводимого зонда и окна, а также соединители оптико-волоконного кабеля. ! Примечание: Убедитесь в наличии газового потока, прислушиваясь к потоку газа, а также проверьте открытие всех необходимых клапанов. Очистите все оптические поверхности • Выньте зонд и очистите зеркала и оптические поверхности. • Удалив колпак, проверьте наличие двух четко сфокусированных отметок. о Если имеется только одна световая отметка или яркость слаба, отсоедините оптико-волоконный кабель и проверьте наличие двух круглых ярких световых пятен от лазера. Проверьте оптико-волоконный кабель с зонда, имея другой конец по своей яркости. • Снимите оптико-волоконный кабель с зонда, имея другой конец с процессора оптического расходомера и проверьте наличие двух красных отметок равной яркости на соединителе оптико-волоконного кабеля. Проверьте выходной сигнал лазера на соединителе процессора оптического расходомера • Снимите оптико-волоконный кабель и направьте лазерное излучение на свою руку или иную неотражающую поверхность. Проверьте равенство яркости на соединителе оптико-волоконного кабеля. Проверьте наличие двух круглых ярких. всли отсутствует одно световое пятно или больше, проверьте текущие настройки лазера (40043 и 40044) и обеспечьте уровень тока между 85мА и 100мА. о Если отсутствует одно световое пятно или больше, проверьте текущие настройки лазера (40043 и 40044) и обеспечьте уровень тока между 85мА и 100мА. о Если свет от лазера все еще отсутствует, обратитесь к представителю заказчика компании Photon Control за получением более подроб

Проверьте настройку процессора оптического
расходомера
Проверьте регистры, указанные ниже.
Наиболее вероятные причины
• Величина минимального порогового значения
{40042} должна быть 5мВ.
• Автоматический регулятор On/Off {40048} должен
быть в положении 13.
• Текущие настройки лазера 1 и 2 {40043 и 40044}
должны быть между 85мА и 100мА.
• Верхняя граница счетчика накопителя {40049}
должна быть на уровне 100.
Менее вероятные причины
• Нижняя граница счетчика накопителя {40050}
должна быть на уровне 15
• Минимальная исходящая скорость должна быть 0,1
м/с.
• Минимальная корреляция {40085} должна быть 5.
• Максимальная корреляция {40086} должна быть
1000.

15. Хранение и транспортирование

- 15.1. Расходомеры в упаковке могут транспортироваться любым видом закрытого транспорта в соответствии с правилами, действующими на этих видах транспорта при температуре от минус 50 до плюс 50 °C и относительной влажности воздуха до (95±3) % при 35 °C и более низких температурах.
- 15.2. При транспортировании расходомеров воздушным транспортом их следует помещать в отапливаемые герметизированные отсеки самолетов.
- 15.3. Железнодорожные вагоны, контейнеры, кузова автомобилей, используемые для перевозки, не должны иметь следов перевозки цемента, угля, химикатов и т.п.
- 15.4. Упакованные расходомеры должны быть закреплены в транспортных средствах.
- 15.5. Расходомеры следует хранить в упаковке предприятия изготовителя по условиям хранения в части воздействия климатических факторов 4 по ГОСТ 15150-69 навесы в макроклиматических районах с умеренным и холодным климатом в условно-чистой атмосфере, при температуре от минус 50 до плюс 50 °C и верхнем значении относительной влажности 98 % при 35 °C и более низких температурах.

16. Сертификаты и разрешения

16.1. Метрология

16.1.1. Оптический расходомер газа FOCUS фирмы «Photon Control Inc» (Канада) зарегистрирован в Государственном реестре средств измерений под № 38670-08 и допущен к применению в Российской Федерации. 16.1.2. Тип средства измерения подтвержден Федеральным агентством по техническому регулированию и метрологии выданным **СЕРТИФИКАТОМ об утверждении типа средств измерений** СА.С.29.065.А № 32659.

16.2. Взрывозащита

- 16.2.1. Взрывозащищенность оптического расходомера газа FOCUS[®]WAFER подтверждена органом по сертификации РОСС RU.0001.11ГБ06 ОРГАН ПО СЕРТИФИКАЦИИ ВЗРЫВОЗАЩИЩЕННЫХ СРЕДСТВ ИЗМЕРЕНИЙ, КОНТРОЛЯ И ЭЛЕМЕНТОВ АВТОМАТИКИ ФГУП «ВНИИФТРИ» ОС ВСИ «ВНИИФТРИ» выданным
- 16.2.2. СЕРТИФИКАТОМ СООТВЕТСТВИЯ на оптические расходомеры газа FOCUS PROBE и FOCUS WAFER № POCC CA.ГБ06.В00450.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Вологорад (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Яроспавль (4852)69-52-93

сайт: www.focusprobe.nt-rt.ru || эл. почта: fcs@nt-rt.ru